论文标题

Adaenlight:移动设备上的能量吸引的低光视频流增强

AdaEnlight: Energy-aware Low-light Video Stream Enhancement on Mobile Devices

论文作者

Liu, Sicong, Li, Xiaochen, Zhou, Zimu, Guo, Bin, Zhang, Meng, Shen, Haochen, Yu, Zhiwen

论文摘要

摄像头设备的无处不在以及深度学习的进步激发了各种智能移动视频应用程序。这些应用程序通常需要对视频流进行设备处理,以提供实时,高质量的服务,以解决隐私和鲁棒性问题。但是,这些应用程序的性能受到原始视频流的限制,这些视频流往往用无处不在的移动平台的小型摄像机以昏暗的光线拍摄。尽管广泛的低光视频增强解决方案,但由于它们的复杂模型以及对能源预算(能源预算)的系统动态的无知,它们仍不适合向移动设备部署。在本文中,我们提出了Adaenlight,这是一种能源感知的移动设备上的低光视频流系统。它以竞争性的视觉质量来实现实时视频增强,同时允许运行时行为适应平台强加的动态能量预算。我们报告了有关不同数据集,方案和平台的广泛实验,并与最先进的低光图像和视频增强解决方案相比,展示了Adaenlight的优越性。

The ubiquity of camera-embedded devices and the advances in deep learning have stimulated various intelligent mobile video applications. These applications often demand on-device processing of video streams to deliver real-time, high-quality services for privacy and robustness concerns. However, the performance of these applications is constrained by the raw video streams, which tend to be taken with small-aperture cameras of ubiquitous mobile platforms in dim light. Despite extensive low-light video enhancement solutions, they are unfit for deployment to mobile devices due to their complex models and and ignorance of system dynamics like energy budgets. In this paper, we propose AdaEnlight, an energy-aware low-light video stream enhancement system on mobile devices. It achieves real-time video enhancement with competitive visual quality while allowing runtime behavior adaptation to the platform-imposed dynamic energy budgets. We report extensive experiments on diverse datasets, scenarios, and platforms and demonstrate the superiority of AdaEnlight compared with state-of-the-art low-light image and video enhancement solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源