论文标题
通过非曲折的证据不均匀的复杂性
Non-uniform complexity via non-wellfounded proofs
论文作者
论文摘要
现在越来越多地使用环状和非曲折的证据来在各种环境中建立金属结果,尤其是针对具有(CO)诱导形式的类型系统。在咖喱咖啡馆的对应关系下,可以将环状证明视为“带环”的打字导数,更接近低级机器模型,因此构成了一种高度表达的计算模型,尽管如此,它仍然具有出色的金属属性。 在最近的工作中,我们展示了如何进一步使用循环设置来建模计算复杂性,从而产生多项式时间和基本可计算函数的特征。这些特征是“隐式”的,受Bellantoni和Cook著名的安全递归代数的启发,但由于循环证明的循环能力,表现出更大的表现力。 在这项工作中,我们调查了有限的呈现能力放宽的非曲折证明的能力,以模拟复杂性理论中的不均匀性。特别是,我们提出了由多项式大小电路计算的函数的类$ \ mathsf {fp/poly} $的表征。尽管非均匀性与非均匀性相关联是一个自然的想法,但从非正式的话来说,捕获$ \ Mathsf {fp/poly} $所需的精确数量是由验证级别的条件给循环证明理论的小说。在此过程中,我们对一些(可能是)民间传说技术形式化,以表征与适当的甲壳相关功能代数中的非均匀类别。
Cyclic and non-wellfounded proofs are now increasingly employed to establish metalogical results in a variety of settings, in particular for type systems with forms of (co)induction. Under the Curry-Howard correspondence, a cyclic proof can be seen as a typing derivation 'with loops', closer to low-level machine models, and so comprise a highly expressive computational model that nonetheless enjoys excellent metalogical properties. In recent work, we showed how the cyclic proof setting can be further employed to model computational complexity, yielding characterisations of the polynomial time and elementary computable functions. These characterisations are 'implicit', inspired by Bellantoni and Cook's famous algebra of safe recursion, but exhibit greater expressivity thanks to the looping capacity of cyclic proofs. In this work we investigate the capacity for non-wellfounded proofs, where finite presentability is relaxed, to model non-uniformity in complexity theory. In particular, we present a characterisation of the class $\mathsf{FP/poly}$ of functions computed by polynomial-size circuits. While relating non-wellfoundedness to non-uniformity is a natural idea, the precise amount of irregularity, informally speaking, required to capture $\mathsf{FP/poly}$ is given by proof-level conditions novel to cyclic proof theory. Along the way, we formalise some (presumably) folklore techniques for characterising non-uniform classes in relativised function algebras with appropriate oracles.