论文标题
背景字段方法中规格对称的模式
Patterns of gauge symmetry in the background field method
论文作者
论文摘要
在背景字段方法中提出的Yang-Mills理论的相关函数满足线性Slavnov-Taylor的身份,这是简单树级关系的天真概括,没有源自理论的幽灵扇区的变形。近年来,发现这些身份的更强大的形式存在于背景gluon自我能源的水平上,其横向性是针对有助于Gluon Schwinger-Dyson方程的每个特殊图表的分别执行的。在目前的工作中,我们通过明确计算证明了斯拉夫诺夫 - 泰勒身份在背景三连带顶点的情况下仍然存在相同的独特实现。分析是在该顶点的确切schwinger-dyson方程的级别上进行的,没有截断或简化的假设。演示需要通过相关动量来收缩单个顶点图,该动量激活了嵌套在这些图内的顶点的斯拉夫诺夫 - 泰勒身份和多粒子内核。最终结果是由于多种广泛的取消而出现的,而无需执行明确的集成。此外,我们指出的是,背景病房的身份等于用零摩托明背景插入代替繁殖器的衍生物,这与阿贝利亚仪表理论的标准特性完全类似。最后,简要讨论了这些结果的某些潜在应用。
The correlation functions of Yang-Mills theories formulated in the background field method satisfy linear Slavnov-Taylor identities, which are naive generalizations of simple tree level relations, with no deformations originating from the ghost sector of the theory. In recent years, a stronger version of these identities has been found to hold at the level of the background gluon self-energy, whose transversality is enforced separately for each special block of diagrams contributing to the gluon Schwinger-Dyson equation. In the present work we demonstrate by means of explicit calculations that the same distinct realization of the Slavnov-Taylor identity persists in the case of the background three-gluon vertex. The analysis is carried out at the level of the exact Schwinger-Dyson equation for this vertex, with no truncations or simplifying assumptions. The demonstration entails the contraction of individual vertex diagrams by the relevant momentum, which activates Slavnov-Taylor identities of vertices and multi-particle kernels nested inside these graphs; the final result emerges by virtue of a multitude of extensive cancellations, without the need of performing explicit integrations. In addition, we point out that background Ward identities amount to replacing derivatives of propagators by zero-momentum background-gluon insertions, in exact analogy to standard properties of Abelian gauge theories. Finally, certain potential applications of these results are briefly discussed.