论文标题

终身嵌入学习和转移以增加知识图

Lifelong Embedding Learning and Transfer for Growing Knowledge Graphs

论文作者

Cui, Yuanning, Wang, Yuxin, Sun, Zequn, Liu, Wenqiang, Jiang, Yiqiao, Han, Kexin, Hu, Wei

论文摘要

现有的知识图(KG)嵌入模型主要集中在静态kg上。但是,现实世界中的kg并不保持静态,而是与KG应用的发展相结合而发展。因此,新事实以及以前看不见的实体和关系不断出现,需要一个嵌入模型,可以通过成长快速学习和转移新知识。在此激励的情况下,我们深入研究了本文嵌入的KG嵌入领域,即终身kg嵌入。我们考虑知识的转移和保留在不断发展的kg的快照中学习的知识,而不必从头开始学习嵌入。提出的模型包括一个掩盖的KG自动编码器,用于嵌入学习和更新,并采用嵌入转移策略将学习知识注入新实体和关系嵌入,以及一种嵌入正则化方法,以避免灾难性遗忘。为了研究KG增长的不同方面的影响,我们构建了四个数据集,以评估终身嵌入的性能。实验结果表明,所提出的模型的表现优于最先进的电感和终身嵌入基线。

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源