论文标题
超级灌注:远程高清图生成的多级激光镜像融合
SuperFusion: Multilevel LiDAR-Camera Fusion for Long-Range HD Map Generation
论文作者
论文摘要
高清(HD)环境的语义图生成是自动驾驶的重要组成部分。现有方法通过融合不同的传感器方式(例如LiDAR和相机)来实现此任务的良好性能。但是,当前的作品基于原始数据或网络功能级融合,仅考虑短距离高清图的生成,将其部署限制为现实的自动驾驶应用程序。在本文中,我们专注于在两个短范围内(即30 m以内)构建HD地图的任务,并预测了长达90 m的远程HD地图,这是下游路径计划和控制任务所要求的,以提高自动驾驶的平稳性和安全性。为此,我们提出了一个名为SuperFusion的新型网络,在多个级别上利用LiDAR和相机数据的融合。我们使用LIDAR深度来改善图像深度估计,并使用图像功能指导远程激光雷达功能预测。我们在Nuscenes数据集和一个自录制的数据集上基准了我们的超级灌注,并表明它在所有间隔上都优于最先进的基线方法。此外,我们将生成的高清图应用于下游路径计划任务,表明我们方法预测的远程HD地图可以为自动驾驶汽车提供更好的路径计划。我们的代码已在https://github.com/haomo-ai/superfusion上发布。
High-definition (HD) semantic map generation of the environment is an essential component of autonomous driving. Existing methods have achieved good performance in this task by fusing different sensor modalities, such as LiDAR and camera. However, current works are based on raw data or network feature-level fusion and only consider short-range HD map generation, limiting their deployment to realistic autonomous driving applications. In this paper, we focus on the task of building the HD maps in both short ranges, i.e., within 30 m, and also predicting long-range HD maps up to 90 m, which is required by downstream path planning and control tasks to improve the smoothness and safety of autonomous driving. To this end, we propose a novel network named SuperFusion, exploiting the fusion of LiDAR and camera data at multiple levels. We use LiDAR depth to improve image depth estimation and use image features to guide long-range LiDAR feature prediction. We benchmark our SuperFusion on the nuScenes dataset and a self-recorded dataset and show that it outperforms the state-of-the-art baseline methods with large margins on all intervals. Additionally, we apply the generated HD map to a downstream path planning task, demonstrating that the long-range HD maps predicted by our method can lead to better path planning for autonomous vehicles. Our code has been released at https://github.com/haomo-ai/SuperFusion.