论文标题
使用量子和混合算法的基准测试模拟和物理量子处理单元
Benchmarking simulated and physical quantum processing units using quantum and hybrid algorithms
论文作者
论文摘要
强大的硬件服务和软件库是快速,负担得起的设计,测试和执行量子算法的重要工具。一项强大的大规模研究,对这些平台的性能如何尺度尺度量子数量,是为具有挑战性的行业问题提供量子解决方案的关键。这项工作基准了专业高性能模拟和物理量子处理单元的代表性样本的运行时和准确性。结果表明,与少于27 QUAT的算法的下一个最快选项相比,QMware模拟器可以将执行量子电路的运行时减少高达78%。 AWS SV1模拟器为较大电路提供了运行时的优势,最多可提供SV1的最多34 QUAT。超过此限制,QMware可以执行高达40 QUAT的电路。物理量子设备(例如Rigetti的Aspen-M2)可以为具有30倍以上的电路提供指数的运行时优势。但是,物理量子加工单元的高财务成本为实际使用带来了严重的障碍。此外,只有IONQ的Harmony量子设备才能使用超过四个量子位实现高保真度。这项研究为理解可用软件和硬件的最佳组合铺平了道路,用于执行实用的量子算法。
Powerful hardware services and software libraries are vital tools for quickly and affordably designing, testing, and executing quantum algorithms. A robust large-scale study of how the performance of these platforms scales with the number of qubits is key to providing quantum solutions to challenging industry problems. This work benchmarks the runtime and accuracy for a representative sample of specialized high-performance simulated and physical quantum processing units. Results show the QMware simulator can reduce the runtime for executing a quantum circuit by up to 78% compared to the next fastest option for algorithms with fewer than 27 qubits. The AWS SV1 simulator offers a runtime advantage for larger circuits, up to the maximum 34 qubits available with SV1. Beyond this limit, QMware can execute circuits as large as 40 qubits. Physical quantum devices, such as Rigetti's Aspen-M2, can provide an exponential runtime advantage for circuits with more than 30 qubits. However, the high financial cost of physical quantum processing units presents a serious barrier to practical use. Moreover, only IonQ's Harmony quantum device achieves high fidelity with more than four qubits. This study paves the way to understanding the optimal combination of available software and hardware for executing practical quantum algorithms.