论文标题

基于几何对齐的实时肖像肖像数字化

Realtime Fewshot Portrait Stylization Based On Geometric Alignment

论文作者

Wang, Xinrui, Li, Zhuoru, Zhou, Xiao, Iwasawa, Yusuke, Matsuo, Yutaka

论文摘要

本文提出了一种肖像风格化方法,专为实时移动应用程序设计,可用示例有限。以前的基于学习的风格化方法遭受了肖像领域和样式域之间的几何和语义差距,这障碍了样式信息,以正确地传输到肖像图像,从而导致风格化质量不佳。根据人面部归因的几何事物,我们建议利用几何对齐来解决此问题。首先,我们在发电机网络中的特征地图上应用薄板间隙(TPS),并直接用于像素空间中的样式图像,从而生成带有相同地标的肖像肖像式图像对,从而缩小了两个域之间的几何差距。其次,对抗性学习将肖像图像的纹理和颜色映射到样式域。最后,几何意识周期一致性保留了不变的内容和身份信息,变形不变约束抑制了伪影和扭曲。定性和定量比较验证我们的方法的表现优于现有方法,并且实验证明我们的方法可以在移动设备上实时实时(超过40 fps)的样式示例(100或更少)培训。消融研究证明了每个组件在框架中的有效性。

This paper presents a portrait stylization method designed for real-time mobile applications with limited style examples available. Previous learning based stylization methods suffer from the geometric and semantic gaps between portrait domain and style domain, which obstacles the style information to be correctly transferred to the portrait images, leading to poor stylization quality. Based on the geometric prior of human facial attributions, we propose to utilize geometric alignment to tackle this issue. Firstly, we apply Thin-Plate-Spline (TPS) on feature maps in the generator network and also directly to style images in pixel space, generating aligned portrait-style image pairs with identical landmarks, which closes the geometric gaps between two domains. Secondly, adversarial learning maps the textures and colors of portrait images to the style domain. Finally, geometric aware cycle consistency preserves the content and identity information unchanged, and deformation invariant constraint suppresses artifacts and distortions. Qualitative and quantitative comparison validate our method outperforms existing methods, and experiments proof our method could be trained with limited style examples (100 or less) in real-time (more than 40 FPS) on mobile devices. Ablation study demonstrates the effectiveness of each component in the framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源