论文标题
第一原理研究和对称分析中的磁相互作用和可能的结构变形
Magnetic interactions and possible structural distortion in kagome FeGe from first-principles study and symmetry analysis
论文作者
论文摘要
基于密度功能理论和对称分析,我们提出了对磁性kagome金属Fege的电子结构,磁性和可能的结构失真的全面研究。我们估计包括海森伯格和dzyaloshinskii-moriya(DM)相互作用的磁参数,并发现铁磁近来的近邻居$ j_ {1} $占主导地位,而最近的kagome层之间的磁相互作用则有利于抗fiferromagnetic。 Néel温度$ t_ {n} $和curie-weiss温度$θ_{CW} $已成功再现,并且计算出的磁各向异性能量也与实验一致。但是,这些合理的海森堡相互作用和磁各向异性无法解释双锥磁的磁转换,并且甚至在中心对称材料中存在的DM相互作用可以导致这种小的磁性锥角。不幸的是,由于高温结构的晶体对称性,不存在DM相互作用对双锥磁结构的净贡献。基于实验$ 2 \ times 2 \ times 2 $ Supercell,我们因此探索了父阶段的子组。组理论分析表明,没有68种不同的扭曲,其中只有四个(空间群$ p622 $或$ p6_ {3} 22 $),而没有反转和镜像对称性,因此可以解释低温磁性结构。此外,我们建议可以使用拉曼光谱法鉴定这四个提出的CDW相。由于DM相互作用对小原子位移和对称限制非常敏感,因此我们认为对称分析是一种有效的方法,可以揭示精致的结构扭曲和复杂的磁性构型的相互作用。
Based on density functional theory and symmetry analysis, we present a comprehensive investigation of electronic structure, magnetic properties and possible structural distortion of magnetic kagome metal FeGe. We estimate the magnetic parameters including Heisenberg and Dzyaloshinskii-Moriya (DM) interactions, and find that the ferromagnetic nearest-neighbor $J_{1}$ dominates over the others, while the magnetic interactions between nearest kagome layers favors antiferromagnetic. The Néel temperature $T_{N}$ and Curie-Weiss temperature $θ_{CW}$ are successfully reproduced, and the calculated magnetic anisotropy energy is also in consistent with the experiment. However, these reasonable Heisenberg interactions and magnetic anisotropy cannot explain the double cone magnetic transition, and the DM interactions, which even exist in the centrosymmetric materials, can result in this small magnetic cone angle. Unfortunately, due to the crystal symmetry of the high-temperature structure, the net contribution of DM interactions to double cone magnetic structure is absent. Based on the experimental $2\times 2\times 2$ supercell, we thus explore the subgroups of the parent phase. Group theoretical analysis reveals that there are 68 different distortions, and only four of them (space group $P622$ or $P6_{3}22$) without inversion and mirror symmetry thus can explain the low-temperature magnetic structure. Furthermore, we suggest that these four proposed CDW phases can be identified by using Raman spectroscopy. Since DM interactions are very sensitive to small atomic displacements and symmetry restrictions, we believe that symmetry analysis is an effective method to reveal the interplay of delicate structural distortions and complex magnetic configurations.