论文标题
用于筛选大型有机分子的机器学习
Machine Learning for Screening Large Organic Molecules
论文作者
论文摘要
有机半导体是廉价,可扩展和可持续的电子设备,发光二极管和光伏的有前途的材料。对于有机光伏细胞,在广阔的化合物空间中找到合适性能的化合物是一个挑战。例如,电离能应适合太阳光的光谱,并且能级必须允许有效的电荷传输。在这里,开发了一个机器学习模型,以快速,准确地估计给定分子结构的同型和Lumo能量。它是基于Schnet模型(Schütt等人(2018))的,并使用“ set2set”读取模块增强(Vinyals等人(2016))。 SET2SET模块比总和和平均聚合具有更大的表达能力,并且更适合所考虑的复杂数量。以前的大多数模型已经接受了相当小的分子的训练和评估。因此,第二个贡献是通过添加来自其他来源的较大分子并建立一致的火车/验证/测试拆分来扩展机器学习方法的范围。作为第三个贡献,我们做了多任务ansatz,以解决不同理论水平的不同来源的问题。结合使用的所有三项贡献都使模型的准确性接近化学精度。
Organic semiconductors are promising materials for cheap, scalable and sustainable electronics, light-emitting diodes and photovoltaics. For organic photovoltaic cells, it is a challenge to find compounds with suitable properties in the vast chemical compound space. For example, the ionization energy should fit to the optical spectrum of sun light, and the energy levels must allow efficient charge transport. Here, a machine-learning model is developed for rapidly and accurately estimating the HOMO and LUMO energies of a given molecular structure. It is build upon the SchNet model (Schütt et al. (2018)) and augmented with a `Set2Set' readout module (Vinyals et al. (2016)). The Set2Set module has more expressive power than sum and average aggregation and is more suitable for the complex quantities under consideration. Most previous models have been trained and evaluated on rather small molecules. Therefore, the second contribution is extending the scope of machine-learning methods by adding also larger molecules from other sources and establishing a consistent train/validation/test split. As a third contribution, we make a multitask ansatz to resolve the problem of different sources coming at different levels of theory. All three contributions in conjunction bring the accuracy of the model close to chemical accuracy.