论文标题

对话的低资源个人属性预测

Low-resource Personal Attribute Prediction from Conversation

论文作者

Liu, Yinan, Chen, Hu, Shen, Wei, Chen, Jiaoyan

论文摘要

个人知识库(PKB)对于广泛的应用程序(例如个性化推荐和基于Web的聊天机器人)至关重要。构建PKB的一个关键挑战是从用户的对话数据中提取个人属性知识。鉴于某些对话系统的用户,个人属性和这些用户的话语,我们的目标是预测每个用户给定个人属性值的排名。以前的研究通常依赖于相对数量的资源,例如标记的话语和外部数据,但是嵌入未标记的话语中的属性知识却没有充分利用,并且它们预测某些困难的个人属性的表现仍然不令人满意。此外,发现可以采用某些文本分类方法直接解决此任务。但是,它们在那些困难的个人属性方面也表现不佳。在本文中,我们提出了一个新颖的框架珍珠,以通过利用在低资源环境下利用语音的丰富个人属性知识来预测对话中的个人属性,在该设置中没有使用标记的话语或外部数据。 Pearl通过使用更新的先前属性知识来完善Biterm主题模型的Gibbs采样过程,将Biterm语义信息与单词共呈现信息相结合。广泛的实验结果表明,Pearl的表现不仅超过了所有基线方法,不仅在两个数据集的对话中从个人属性预测的任务上,而且在一个数据集上更一般弱监督的文本分类任务。

Personal knowledge bases (PKBs) are crucial for a broad range of applications such as personalized recommendation and Web-based chatbots. A critical challenge to build PKBs is extracting personal attribute knowledge from users' conversation data. Given some users of a conversational system, a personal attribute and these users' utterances, our goal is to predict the ranking of the given personal attribute values for each user. Previous studies often rely on a relative number of resources such as labeled utterances and external data, yet the attribute knowledge embedded in unlabeled utterances is underutilized and their performance of predicting some difficult personal attributes is still unsatisfactory. In addition, it is found that some text classification methods could be employed to resolve this task directly. However, they also perform not well over those difficult personal attributes. In this paper, we propose a novel framework PEARL to predict personal attributes from conversations by leveraging the abundant personal attribute knowledge from utterances under a low-resource setting in which no labeled utterances or external data are utilized. PEARL combines the biterm semantic information with the word co-occurrence information seamlessly via employing the updated prior attribute knowledge to refine the biterm topic model's Gibbs sampling process in an iterative manner. The extensive experimental results show that PEARL outperforms all the baseline methods not only on the task of personal attribute prediction from conversations over two data sets, but also on the more general weakly supervised text classification task over one data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源