论文标题
部分可观测时空混沌系统的无模型预测
Adversarial Rademacher Complexity of Deep Neural Networks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Deep neural networks are vulnerable to adversarial attacks. Ideally, a robust model shall perform well on both the perturbed training data and the unseen perturbed test data. It is found empirically that fitting perturbed training data is not hard, but generalizing to perturbed test data is quite difficult. To better understand adversarial generalization, it is of great interest to study the adversarial Rademacher complexity (ARC) of deep neural networks. However, how to bound ARC in multi-layers cases is largely unclear due to the difficulty of analyzing adversarial loss in the definition of ARC. There have been two types of attempts of ARC. One is to provide the upper bound of ARC in linear and one-hidden layer cases. However, these approaches seem hard to extend to multi-layer cases. Another is to modify the adversarial loss and provide upper bounds of Rademacher complexity on such surrogate loss in multi-layer cases. However, such variants of Rademacher complexity are not guaranteed to be bounds for meaningful robust generalization gaps (RGG). In this paper, we provide a solution to this unsolved problem. Specifically, we provide the first bound of adversarial Rademacher complexity of deep neural networks. Our approach is based on covering numbers. We provide a method to handle the robustify function classes of DNNs such that we can calculate the covering numbers. Finally, we provide experiments to study the empirical implication of our bounds and provide an analysis of poor adversarial generalization.