论文标题
部分可观测时空混沌系统的无模型预测
Conditioning Covert Geo-Location (CGL) Detection on Semantic Class Information
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The primary goal of artificial intelligence is to mimic humans. Therefore, to advance toward this goal, the AI community attempts to imitate qualities/skills possessed by humans and imbibes them into machines with the help of datasets/tasks. Earlier, many tasks which require knowledge about the objects present in an image are satisfactorily solved by vision models. Recently, with the aim to incorporate knowledge about non-object image regions (hideouts, turns, and other obscured regions), a task for identification of potential hideouts termed Covert Geo-Location (CGL) detection was proposed by Saha et al. It involves identification of image regions which have the potential to either cause an imminent threat or appear as target zones to be accessed for further investigation to identify any occluded objects. Only certain occluding items belonging to certain semantic classes can give rise to CGLs. This fact was overlooked by Saha et al. and no attempts were made to utilize semantic class information, which is crucial for CGL detection. In this paper, we propose a multitask-learning-based approach to achieve 2 goals - i) extraction of features having semantic class information; ii) robust training of the common encoder, exploiting large standard annotated datasets as training set for the auxiliary task (semantic segmentation). To explicitly incorporate class information in the features extracted by the encoder, we have further employed attention mechanism in a novel manner. We have also proposed a better evaluation metric for CGL detection that gives more weightage to recognition rather than precise localization. Experimental evaluations performed on the CGL dataset, demonstrate a significant increase in performance of about 3% to 14% mIoU and 3% to 16% DaR on split 1, and 1% mIoU and 1% to 2% DaR on split 2 over SOTA, serving as a testimony to the superiority of our approach.