论文标题

部分可观测时空混沌系统的无模型预测

Radial Neighbors for Provably Accurate Scalable Approximations of Gaussian Processes

论文作者

Zhu, Yichen, Peruzzi, Michele, Li, Cheng, Dunson, David B.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In geostatistical problems with massive sample size, Gaussian processes can be approximated using sparse directed acyclic graphs to achieve scalable $O(n)$ computational complexity. In these models, data at each location are typically assumed conditionally dependent on a small set of parents which usually include a subset of the nearest neighbors. These methodologies often exhibit excellent empirical performance, but the lack of theoretical validation leads to unclear guidance in specifying the underlying graphical model and sensitivity to graph choice. We address these issues by introducing radial neighbors Gaussian processes (RadGP), a class of Gaussian processes based on directed acyclic graphs in which directed edges connect every location to all of its neighbors within a predetermined radius. We prove that any radial neighbors Gaussian process can accurately approximate the corresponding unrestricted Gaussian process in Wasserstein-2 distance, with an error rate determined by the approximation radius, the spatial covariance function, and the spatial dispersion of samples. We offer further empirical validation of our approach via applications on simulated and real world data showing excellent performance in both prior and posterior approximations to the original Gaussian process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源