论文标题

耗散对称性保护拓扑顺序

Dissipative Symmetry-Protected Topological Order

论文作者

Veríssimo, Luan M., Lyra, Marcelo L., Orus, Roman

论文摘要

在这项工作中,我们研究了耗散与对称性保护拓扑秩序之间的相互作用。我们考虑了一维自旋-1 Affleck-Kennedy-Lieb-Tasaki模型与Lindladian Master方程描述耗散动力学的环境相互作用。 Markovian动力学是通过在热力学极限下的混合状态实施张量网络算法来解决的。我们观察到,对于时间逆转的对称耗散,即使是混合状态,所得的稳态也具有拓扑特征。这在有限的弦序参数以及张量矩阵的张量网络分解中的奇异值的脱落模式中可以看出这一点。我们还表明,这种特征没有出现在非对称耗散的情况下。我们的工作为耗散引起的混合状态的对称性保护拓扑顺序的广义和更实用的定义开辟了道路。

In this work, we investigate the interplay between dissipation and symmetry-protected topological order. We considered the one-dimensional spin-1 Affleck-Kennedy-Lieb-Tasaki model interacting with an environment where the dissipative dynamics are described by the Lindladian master equation. The Markovian dynamics is solved by the implementation of a tensor network algorithm for mixed states in the thermodynamic limit. We observe that, for time-reversal symmetric dissipation, the resulting steady state has topological signatures even if being a mixed state. This is seen in finite string-order parameters as well as in the degeneracy pattern of singular values in the tensor network decomposition of the reduced density matrix. We also show that such features do not appear for non-symmetric dissipation. Our work opens the way toward a generalized and more practical definition of symmetry-protected topological order for mixed states induced by dissipation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源