论文标题

混合歧管网络:用于反向建模的计算高效基线

Mixture Manifold Networks: A Computationally Efficient Baseline for Inverse Modeling

论文作者

Spell, Gregory P., Ren, Simiao, Collins, Leslie M., Malof, Jordan M.

论文摘要

我们提出并显示了一种解决通用反问题的新方法的功效。反向建模是人们寻求确定自然系统的控制参数的任务,该系统会产生一组给定的观察到的测量值。最近的工作显示了使用深度学习的令人印象深刻的结果,但我们注意到模型性能与计算时间之间存在权衡。对于某些应用,最佳性能反向建模方法推断的计算时间可能过于夸张。我们提出了一种新方法,该方法将多种流形作为前向后模型体系结构中向后的(例如,逆)模型的混合物。这些多个向后的模型都共享一个共同的前向模型,并且通过从远期模型中生成培训示例来减轻他们的培训。因此,提出的方法具有两种创新:1)多种流形混合网络(MMN)体系结构,以及2)涉及使用正向模型增强向后模型训练数据的训练程序。我们通过与四个基准逆问题的几个基线进行比较,证明了我们方法的优势,然后我们提供了分析以激发其设计。

We propose and show the efficacy of a new method to address generic inverse problems. Inverse modeling is the task whereby one seeks to determine the control parameters of a natural system that produce a given set of observed measurements. Recent work has shown impressive results using deep learning, but we note that there is a trade-off between model performance and computational time. For some applications, the computational time at inference for the best performing inverse modeling method may be overly prohibitive to its use. We present a new method that leverages multiple manifolds as a mixture of backward (e.g., inverse) models in a forward-backward model architecture. These multiple backwards models all share a common forward model, and their training is mitigated by generating training examples from the forward model. The proposed method thus has two innovations: 1) the multiple Manifold Mixture Network (MMN) architecture, and 2) the training procedure involving augmenting backward model training data using the forward model. We demonstrate the advantages of our method by comparing to several baselines on four benchmark inverse problems, and we furthermore provide analysis to motivate its design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源