论文标题
DoubleU-Netplus:一种新颖的关注和上下文引导的双U-NET,具有多尺度残差特征融合网络,用于语义分割医学图像
DoubleU-NetPlus: A Novel Attention and Context Guided Dual U-Net with Multi-Scale Residual Feature Fusion Network for Semantic Segmentation of Medical Images
论文作者
论文摘要
准确分割医学图像中感兴趣的区域可以为制定威胁生命疾病的有效治疗计划提供必要的途径。对于U-NET及其最先进的变体(例如CE-NET和DoubleU Net)仍然具有挑战性,可以有效地对网络卷积单元的高级输出特征图进行建模,主要是由于感兴趣的各个区域的存在,上下文环境的复杂性,上下文环境的复杂性,模棱两可的边界,模棱两可的边界,以及医疗图像中的多样性。在本文中,我们利用多种文字特征和几种注意策略来提高网络对判别特征表示形式建模的能力,以进行更准确的医学图像分割,并提出了一种新型的基于双U-NET的架构,名为Doubleu-netplus。 Double-NetPlus结合了几种架构修改。特别是,我们将有效的NetB7整合为功能编码器模块,新设计的多内核剩余卷积模块,以及一种自适应功能,将基于注意力集中的空间空间金字塔池模块重新校准,以逐步且准确地积累多个刻度的高级高级上下文图映射图和alsopions saligy区域。此外,我们引入了一个新型的三重注意门模块和一个混合三重注意模块,以鼓励对相关医疗图像特征进行选择性建模。此外,为了减轻梯度消失的问题并将高分辨率特征与更深的空间细节结合在一起,标准的卷积操作被注意力引导的残留卷积操作取代,...
Accurate segmentation of the region of interest in medical images can provide an essential pathway for devising effective treatment plans for life-threatening diseases. It is still challenging for U-Net, and its state-of-the-art variants, such as CE-Net and DoubleU-Net, to effectively model the higher-level output feature maps of the convolutional units of the network mostly due to the presence of various scales of the region of interest, intricacy of context environments, ambiguous boundaries, and multiformity of textures in medical images. In this paper, we exploit multi-contextual features and several attention strategies to increase networks' ability to model discriminative feature representation for more accurate medical image segmentation, and we present a novel dual U-Net-based architecture named DoubleU-NetPlus. The DoubleU-NetPlus incorporates several architectural modifications. In particular, we integrate EfficientNetB7 as the feature encoder module, a newly designed multi-kernel residual convolution module, and an adaptive feature re-calibrating attention-based atrous spatial pyramid pooling module to progressively and precisely accumulate discriminative multi-scale high-level contextual feature maps and emphasize the salient regions. In addition, we introduce a novel triple attention gate module and a hybrid triple attention module to encourage selective modeling of relevant medical image features. Moreover, to mitigate the gradient vanishing issue and incorporate high-resolution features with deeper spatial details, the standard convolution operation is replaced with the attention-guided residual convolution operations, ...