论文标题
次命的晶格有序的交换性肌酸
Subresiduated lattice ordered commutative monoids
论文作者
论文摘要
一个次命的晶格订购的可交换性肌体(或简称SRL单键型)是一对$(\ textbf {a},q)$,其中$ \ textbf {a} =(a,\ wedge,\ wedge,\ vee,\ vee,\ cdot,e)$是type $ type $ type $ type $ type $(2,2,2,2,2,0)$(晶格,$(a,\ cdot,e)$是一个可交换的单体,$(a \ vee b)\ cdot c =(a \ cdot c)\ vee(b \ cdot c)$(b \ cdot c)$ in a $ a,b,c \ in a $ and $ q $ in a $ a $ a $ a $ a $使用所有$ q \ in q $,$ a \ cdot q \ leq b $的属性,仅当$ q \ leq c $。此$ c $由$ a \ rightarrow_q b $表示,或者仅以$ a \ rightarrow b $。 srl-monoids $(\ textbf {a},q)$可以被视为代数$(a,\ wedge,\ vee,\ cdot,\ cdot,\ rightarrow,e)$(2,2,2,2,2,0)$。这些代数分别是次命晶格和交换性残留晶格的概括。 在本文中,我们证明了SRL - 单型类别形成了一种多样性。我们表明,任何SRL单子型的一致性晶格与其强凸亚构象的晶格是同构的,我们还描述了由任何SRL-孔子的负锥的子集产生的强凸亚位bra。我们采用这两种结果,以研究任何SRL单子型的一致性的晶格,作为其完全有序成员产生的多种SRL单型的应用替代方程基础。
A subresiduated lattice ordered commutative monoid (or srl-monoid for short) is a pair $(\textbf{A},Q)$ where $\textbf{A}=(A,\wedge,\vee,\cdot,e)$ is an algebra of type $(2,2,2,0)$ such that $(A,\wedge,\vee)$ is a lattice, $(A,\cdot,e)$ is a commutative monoid, $(a\vee b)\cdot c = (a\cdot c) \vee (b\cdot c)$ for every $a,b,c\in A$ and $Q$ is a subalgebra of \textbf{A} such that for each $a,b\in A$ there exists $c\in Q$ with the property that for all $q\in Q$, $a\cdot q \leq b$ if and only if $q\leq c$. This $c$ is denoted by $a\rightarrow_Q b$, or simply by $a\rightarrow b$. The srl-monoids $(\textbf{A},Q)$ can be regarded as algebras $(A,\wedge,\vee,\cdot,\rightarrow, e)$ of type $(2,2,2,2,0)$. These algebras are a generalization of subresiduated lattices and commutative residuated lattices respectively. In this paper we prove that the class of srl-monoids forms a variety. We show that the lattice of congruences of any srl-monoid is isomorphic to the lattice of its strongly convex subalgebras and we also give a description of the strongly convex subalgebra generated by a subset of the negative cone of any srl-monoid. We apply both results in order to study the lattice of congruences of any srl-monoid by giving as application alternative equational basis for the variety of srl-monoids generated by its totally ordered members.