论文标题

季节内的棉花货球估计的模糊聚类

Fuzzy clustering for the within-season estimation of cotton phenology

论文作者

Sitokonstantinou, Vasileios, Koukos, Alkiviadis, Tsoumas, Ilias, Bartsotas, Nikolaos S., Kontoes, Charalampos, Karathanassi, Vassilia

论文摘要

作物物候学是作物产量估计和农业管理的关键信息。传统上,从地面上观察到物候学。但是,已经使用了地球观察,天气和土壤数据来捕获作物的生理生长。在这项工作中,我们提出了一种新的方法,以在田间对棉花的季节候位估计。为此,我们利用各种地球观测植被指数(源自前哨2)和大气和土壤参数的数值模拟。我们的方法不受监禁,无法解决稀疏和稀缺的地面真相数据的问题,这使得在现实世界中最有监督的替代方案是不切实际的。我们应用模糊的c均值聚类来识别棉花的主要物候阶段,然后使用簇构件权重进一步预测相邻阶段之间的过渡阶段。为了评估我们的模型,我们在希腊Orchomenos收集了1,285个作物生长地面观测。我们引入了一个新的收集方案,分配了多达两个物候标签,这些标签代表了该领域的主要和次要生长阶段,因此指出了何时过渡。我们的模型经过基线模型的测试,该模型允许隔离随机协议并评估其真正的能力。结果表明,我们的模型的表现大大优于基线,这是考虑到方法的无监督性质,这很有希望。彻底讨论了局限性和相关的未来工作。地面观测值是在现成的数据集中格式化的,将在出版后的https://github.com/agri-hub/cotton-phenology-dataset上找到。

Crop phenology is crucial information for crop yield estimation and agricultural management. Traditionally, phenology has been observed from the ground; however Earth observation, weather and soil data have been used to capture the physiological growth of crops. In this work, we propose a new approach for the within-season phenology estimation for cotton at the field level. For this, we exploit a variety of Earth observation vegetation indices (derived from Sentinel-2) and numerical simulations of atmospheric and soil parameters. Our method is unsupervised to address the ever-present problem of sparse and scarce ground truth data that makes most supervised alternatives impractical in real-world scenarios. We applied fuzzy c-means clustering to identify the principal phenological stages of cotton and then used the cluster membership weights to further predict the transitional phases between adjacent stages. In order to evaluate our models, we collected 1,285 crop growth ground observations in Orchomenos, Greece. We introduced a new collection protocol, assigning up to two phenology labels that represent the primary and secondary growth stage in the field and thus indicate when stages are transitioning. Our model was tested against a baseline model that allowed to isolate the random agreement and evaluate its true competence. The results showed that our model considerably outperforms the baseline one, which is promising considering the unsupervised nature of the approach. The limitations and the relevant future work are thoroughly discussed. The ground observations are formatted in an ready-to-use dataset and will be available at https://github.com/Agri-Hub/cotton-phenology-dataset upon publication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源