论文标题
实时播放摄像机图像恢复和移动设备上的HDR
Real-Time Under-Display Cameras Image Restoration and HDR on Mobile Devices
论文作者
论文摘要
全屏设备的新趋势意味着将摄像头放在屏幕后面,以带来更大的显示体比率,增强目光接触,并在智能手机,电视或平板电脑上提供无缺口的观看体验。另一方面,由隔离摄像机(UDC)捕获的图像被其前面的屏幕降解。图像恢复的深度学习方法可以显着减少捕获的图像的降解,从而为人眼提供令人满意的结果。但是,大多数提出的解决方案不可靠或有效,可以在移动设备上实时使用。 在本文中,我们旨在使用能够在商用智能手机上实时处理FHD图像的有效深度学习方法来解决此图像恢复问题,同时提供高质量的结果。我们为盲目的UDC图像恢复和HDR提出了一个轻巧的模型,并且还提供了一个基准,以比较智能手机上不同方法的性能和运行时。我们的模型在UDC基准测试中具有竞争力,而使用X4的操作要比其他模型更少。据我们所知,我们是第一项从效率和生产的角度来处理和分析这个现实世界中的单像恢复问题和分析的工作。
The new trend of full-screen devices implies positioning the camera behind the screen to bring a larger display-to-body ratio, enhance eye contact, and provide a notch-free viewing experience on smartphones, TV or tablets. On the other hand, the images captured by under-display cameras (UDCs) are degraded by the screen in front of them. Deep learning methods for image restoration can significantly reduce the degradation of captured images, providing satisfying results for the human eyes. However, most proposed solutions are unreliable or efficient enough to be used in real-time on mobile devices. In this paper, we aim to solve this image restoration problem using efficient deep learning methods capable of processing FHD images in real-time on commercial smartphones while providing high-quality results. We propose a lightweight model for blind UDC Image Restoration and HDR, and we also provide a benchmark comparing the performance and runtime of different methods on smartphones. Our models are competitive on UDC benchmarks while using x4 less operations than others. To the best of our knowledge, we are the first work to approach and analyze this real-world single image restoration problem from the efficiency and production point of view.