论文标题
部分可观测时空混沌系统的无模型预测
Contextual Decision-Making with Knapsacks Beyond the Worst Case
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study the framework of a dynamic decision-making scenario with resource constraints. In this framework, an agent, whose target is to maximize the total reward under the initial inventory, selects an action in each round upon observing a random request, leading to a reward and resource consumptions that are further associated with an unknown random external factor. While previous research has already established an $\widetilde{O}(\sqrt{T})$ worst-case regret for this problem, this work offers two results that go beyond the worst-case perspective: one for the worst-case gap between benchmarks and another for logarithmic regret rates. We first show that an $Ω(\sqrt{T})$ distance between the commonly used fluid benchmark and the online optimum is unavoidable when the former has a degenerate optimal solution. On the algorithmic side, we merge the re-solving heuristic with distribution estimation skills and propose an algorithm that achieves an $\widetilde{O}(1)$ regret as long as the fluid LP has a unique and non-degenerate solution. Furthermore, we prove that our algorithm maintains a near-optimal $\widetilde{O}(\sqrt{T})$ regret even in the worst cases and extend these results to the setting where the request and external factor are continuous. Regarding information structure, our regret results are obtained under two feedback models, respectively, where the algorithm accesses the external factor at the end of each round and at the end of a round only when a non-null action is executed.