论文标题

可再生能源调度的可扩展型二元框架

A Scalable Bilevel Framework for Renewable Energy Scheduling

论文作者

Zhao, Dongwei, Dvorkin, Vladimir, Delikaraoglou, Stefanos, L., Alberto J. Lamadrid, Botterud, Audun

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Accommodating the uncertain and variable renewable energy sources (VRES) in electricity markets requires sophisticated and scalable tools to achieve market efficiency. To account for the uncertain imbalance costs in the real-time market while remaining compatible with the existing sequential market-clearing structure, our work adopts an uncertainty-informed adjustment toward the VRES contract quantity scheduled in the day-ahead market. This mechanism requires solving a bilevel problem, which is computationally challenging for practical large-scale systems. To improve the scalability, we propose a technique based on strong duality and McCormick envelopes, which relaxes the original problem to linear programming. We conduct numerical studies on both IEEE 118-bus and 1814-bus NYISO systems. Results show that the proposed relaxation can achieve good performance in accuracy (0.7%-gap in the system cost wrt. the least-cost stochastic clearing benchmark) and scalability (solving the NYISO system in minutes). Furthermore, the benefit of this bilevel VRES-quantity adjustment is more significant under higher penetration levels of VRES (e.g., 70%), under which the system cost can be reduced substantially compared to a myopic day-ahead offer strategy of VRES.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源