论文标题

计数多重复合数字

Counting Involutions on Multicomplex Numbers

论文作者

Doyon, Nicolas, Parisé, Pierre-Olivier, Verreault, William

论文摘要

我们表明,多符号数量$ n $的实线自动形态和签名的$ 2^{n-1} $之间的实际自动形态之间存在培训。这使我们能够推断出多重复合数字的许多结果,包括用于多重复合空间上的次数数量的公式,该公式将最新结果推广到双色杂志数字上,并与季节案例形成鲜明对比。我们还将此公式推广到$ r $ involutions,并获得保留基本假想单元的互动数量的公式。这些证明依赖于与多符合数字有关的新基本结果,这些结果在文献中出人意料地未知,包括计数和代表定理,以平方为$ \ pm 1 $。

We show that there is a bijection between real-linear automorphisms of the multicomplex numbers of order $n$ and signed permutations of length $2^{n-1}$. This allows us to deduce a number of results on the multicomplex numbers, including a formula for the number of involutions on multicomplex spaces which generalizes a recent result on the bicomplex numbers and contrasts drastically with the quaternion case. We also generalize this formula to $r$-involutions and obtain a formula for the number of involutions preserving elementary imaginary units. The proofs rely on new elementary results pertaining to multicomplex numbers that are surprisingly unknown in the literature, including a count and a representation theorem for numbers squaring to $\pm 1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源