论文标题
能力感知的神经机器翻译:机器翻译可以知道自己的翻译质量吗?
Competency-Aware Neural Machine Translation: Can Machine Translation Know its Own Translation Quality?
论文作者
论文摘要
神经机器翻译(NMT)经常因没有意识而发生的失败而受到批评。缺乏能力意识使NMT不信任。这与人类翻译人员形成鲜明对比,他们在对预测有疑问时会提供反馈或进一步调查。为了填补这一空白,我们提出了一种新颖的能力感知NMT,通过使用自估计器扩展常规NMT,提供了转化源句子并估算其能力的能力。自我估计器编码解码过程的信息,然后检查是否可以重建源句子的原始语义。对四个翻译任务的实验结果表明,所提出的方法不仅完成了翻译任务完整,而且在质量估计上提供了出色的性能。与最先进的指标和质量估计方法通常需要的任何参考或注释数据相比,与人类质量判断的相关性更高,而不是上述方法,例如Bleurt,Comet和BertScore,我们的模型与人类质量判断的相关性更高。定量和定性分析在我们的模型中表现出更好的能力意识的鲁棒性。
Neural machine translation (NMT) is often criticized for failures that happen without awareness. The lack of competency awareness makes NMT untrustworthy. This is in sharp contrast to human translators who give feedback or conduct further investigations whenever they are in doubt about predictions. To fill this gap, we propose a novel competency-aware NMT by extending conventional NMT with a self-estimator, offering abilities to translate a source sentence and estimate its competency. The self-estimator encodes the information of the decoding procedure and then examines whether it can reconstruct the original semantics of the source sentence. Experimental results on four translation tasks demonstrate that the proposed method not only carries out translation tasks intact but also delivers outstanding performance on quality estimation. Without depending on any reference or annotated data typically required by state-of-the-art metric and quality estimation methods, our model yields an even higher correlation with human quality judgments than a variety of aforementioned methods, such as BLEURT, COMET, and BERTScore. Quantitative and qualitative analyses show better robustness of competency awareness in our model.