论文标题

马尔可夫链由偏见的随机毁灭引起

Markov chains arising from biased random derangements

论文作者

da Silva, Poly H., Jamshidpey, Arash, Tavaré, Simon

论文摘要

我们探索了一类有偏见的随机幻觉的周期类型,这些杂物被描述为一些孩子玩的随机游戏,标有1美元,\ cdots,n $。孩子们以随机顺序逐一加入游戏,并随机形成一些大小至少$ 2 $的圆圈,因此没有孩子一个人。该游戏产生了随机毁灭的环状分解,从而引起了可交换的随机分区。圆圈关闭的速率随时间变化,并且每次$ t $,取决于直到t播放的个人数量。 $ \ {0,1 \} $ - 有价值的马尔可夫链$ x^n $记录相应的随机危险的循环类型,因为任何$ 1 $都代表关闭一个圆圈的手抓事件。使用此过程,我们研究了随机毁灭及其渐近行为的周期计数和大小。我们将$ x^n $的反向链与其弱限制$ x^\ infty $之间的总变化距离约为$ n \ to \ infty $。我们建立了$ x^n $与伙伴耦合的概括之间的有条件(和向前的)关系,鉴于后者没有$ 11 $ -PATTERN($ 1 $ -Crecle)。我们将这些关系扩展到$ x^\ infty $,并将它们应用它们来调查$ x^n $的一些渐近行为。

We explore the cycle types of a class of biased random derangements, described as a random game played by some children labeled $1,\cdots,n$. Children join the game one by one, in a random order, and randomly form some circles of size at least $2$, so that no child is left alone. The game gives rise to the cyclic decomposition of a random derangement, inducing an exchangeable random partition. The rate at which the circles are closed varies in time, and at each time $t$, depends on the number of individuals who have not played until t. A $\{0,1\}$-valued Markov chain $ X^n$ records the cycle type of the corresponding random derangement in that any $1$ represents a hand-grasping event that closes a circle. Using this, we study the cycle counts and sizes of the random derangements and their asymptotic behavior. We approximate the total variation distance between the reversed chain of $X^n$ and its weak limit $X^\infty$, as $n\to\infty$. We establish conditional (and push-forward) relations between $X^n$ and a generalization of the Feller coupling, given that no $11$-pattern ($1$-cycle) appears in the latter. We extend these relations to $X^\infty$ and apply them to investigate some asymptotic behaviors of $X^n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源