论文标题
强烈的暗物质自我互动使银河系内外的光环种群多样化
Strong Dark Matter Self-interactions Diversify Halo Populations within and surrounding the Milky Way
论文作者
论文摘要
我们使用一个大型的大型麦哲伦云模拟模拟(MW)进行了高分辨率的宇宙变性模拟(MW),其中包括一个逼真的大型麦哲伦云模拟,使用大型差异弹性暗物质自我交叉截面,该横截面达到$ \ \ \ \ mathrm {Cm} 10〜 \ mathrm {km \ s}^{ - 1} $,是由矮星系内和周围的矮星系的各种且依赖性依赖的中央密度。我们通过它们的丰度,中央密度,最大圆速度,轨道参数以及这些变量之间的相关性,探索暗物质自相互作用对卫星,飞溅和孤立的光晕的影响。我们使用有效的恒定横截面模型在分析上预测我们模拟的光热进化的阶段,这表明与无碰撞的$ r _ {\ rm max} $ - $ v _ {\ rm max} $ - {\ rm max} $相关性可用于选择深度核心的halos,其中$ v _ max} $ rm max} $ rm max} $ r _ {\ rm max} $是发生的半径。我们预测,质量下降到$ \ $ \ 10^8〜m _ {\ odot} $的Subhalos的大量分数(约20 \%$)在我们的SIDM模型中深深地崩溃了。核心收集的系统形式$ \ \%的孤立光环群体的大约10 \%$降至同一质量;这些孤立的,核心的光环将拥有具有极高陡峭的中央密度曲线的微弱矮小的田地星系。最后,大多数具有高于$ \ $ \ 10^9〜m _ {\ odot} $的质量的光晕在我们的模拟中是核心形成的。因此,我们的研究表明,自我互动如何以环境依赖的方式在MW-MAS宿主中多样化的光环群体,从而提供了令人信服的途径,以解决观察到的矮星系的各种暗物质分布。
We perform a high-resolution cosmological zoom-in simulation of a Milky Way (MW)--like system, which includes a realistic Large Magellanic Cloud analog, using a large differential elastic dark matter self-interaction cross section that reaches $\approx 100~\mathrm{cm}^2\ \mathrm{g}^{-1}$ at relative velocities of $\approx 10~\mathrm{km\ s}^{-1}$, motivated by the diverse and orbitally dependent central densities of dwarf galaxies within and surrounding the MW. We explore the effects of dark matter self-interactions on satellite, splashback, and isolated halos through their abundance, central densities, maximum circular velocities, orbital parameters, and correlations between these variables. We use an effective constant cross section model to analytically predict the stages of our simulated halos' gravothermal evolution, demonstrating that deviations from the collisionless $R_{\rm max}$--$V_{\rm max}$ relation can be used to select deeply core-collapsed halos, where $V_{\rm max}$ is a halo's maximum circular velocity, and $R_{\rm max}$ is the radius at which it occurs. We predict that a sizable fraction ($\approx 20\%$) of subhalos with masses down to $\approx 10^8~M_{\odot}$ is deeply core collapsed in our SIDM model. Core-collapsed systems form $\approx 10\%$ of the isolated halo population down to the same mass; these isolated, core-collapsed halos would host faint dwarf field galaxies with extremely steep central density profiles. Finally, most halos with masses above $\approx 10^9~M_{\odot}$ are core-forming in our simulation. Our study thus demonstrates how self-interactions diversify halo populations in an environmentally dependent fashion within and surrounding MW-mass hosts, providing a compelling avenue to address the diverse dark matter distributions of observed dwarf galaxies.