论文标题

使用R软件包DeepTrafo估算通过神经网络估算条件分布

Estimating Conditional Distributions with Neural Networks using R package deeptrafo

论文作者

Kook, Lucas, Baumann, Philipp FM, Dürr, Oliver, Sick, Beate, Rügamer, David

论文摘要

当代的经验应用通常需要用于复杂响应类型以及大型表格或非符号的灵活回归模型,包括图像或文本,数据。经典的回归模型要么在处理此类数据的计算负载下分解,要么需要其他手动特征提取以使这些问题可解决。在这里,我们提出了DeepTrafo,该软件包用于拟合灵活的回归模型,用于使用张量后的后端和许多其他处理器,例如神经网络,惩罚和平滑光谱。包装DeepTrafo实现了深层条件转换模型(DCTM),用于二进制,序数,计数,生存,连续和时间序列响应,可能会带有非信息审查。与其他可用方法不同,DCTM不假定响应的参数分布族。此外,数据分析师可以通过在直觉公式接口中为每个学期提供自定义神经网络架构和Smoothorts来权衡可解释性和灵活性。我们演示了如何为多种响应类型设置,适应和使用DCTM。我们进一步展示了如何构建这些模型的合奏,使用内置的交叉验证评估模型,并在多种应用中使用其他便利功能来为DCTM使用其他便利功能。最后,根据其他非尾数据回归方法,我们讨论了DCTM。

Contemporary empirical applications frequently require flexible regression models for complex response types and large tabular or non-tabular, including image or text, data. Classical regression models either break down under the computational load of processing such data or require additional manual feature extraction to make these problems tractable. Here, we present deeptrafo, a package for fitting flexible regression models for conditional distributions using a tensorflow backend with numerous additional processors, such as neural networks, penalties, and smoothing splines. Package deeptrafo implements deep conditional transformation models (DCTMs) for binary, ordinal, count, survival, continuous, and time series responses, potentially with uninformative censoring. Unlike other available methods, DCTMs do not assume a parametric family of distributions for the response. Further, the data analyst may trade off interpretability and flexibility by supplying custom neural network architectures and smoothers for each term in an intuitive formula interface. We demonstrate how to set up, fit, and work with DCTMs for several response types. We further showcase how to construct ensembles of these models, evaluate models using inbuilt cross-validation, and use other convenience functions for DCTMs in several applications. Lastly, we discuss DCTMs in light of other approaches to regression with non-tabular data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源