论文标题
基于GAR PRIC的空空间学习,以一致的超分辨率
GAN Prior based Null-Space Learning for Consistent Super-Resolution
论文作者
论文摘要
一致性和现实一直是图像超分辨率的两个关键问题。尽管使用GAN先验,但现实性得到了极大的改善,但最先进的方法仍然存在局部结构和颜色(例如牙齿和眼睛)的不一致。在本文中,我们表明这些不一致可以通过仅在固定范围空间部分的同时学习零空间组件来分析消除。此外,我们设计了基于汇总的分解(PD),这是一种用于超分辨率任务的通用范围空间分解,它是简洁,快速且无参数的。 PD可以轻松地应用于最先进的SR方法,以消除其不一致之处,既不会损害现实性,也不会带来额外的参数或计算成本。此外,我们的消融研究表明,PD可以替代像素损失的训练损失,并在面对看不见的下采样甚至现实世界的降级时获得更好的概括性能。实验表明,使用PD刷新最先进的SR性能,并加快了训练的收敛性高达2〜10倍。
Consistency and realness have always been the two critical issues of image super-resolution. While the realness has been dramatically improved with the use of GAN prior, the state-of-the-art methods still suffer inconsistencies in local structures and colors (e.g., tooth and eyes). In this paper, we show that these inconsistencies can be analytically eliminated by learning only the null-space component while fixing the range-space part. Further, we design a pooling-based decomposition (PD), a universal range-null space decomposition for super-resolution tasks, which is concise, fast, and parameter-free. PD can be easily applied to state-of-the-art GAN Prior based SR methods to eliminate their inconsistencies, neither compromising the realness nor bringing extra parameters or computational costs. Besides, our ablation studies reveal that PD can replace pixel-wise losses for training and achieve better generalization performance when facing unseen downsamplings or even real-world degradation. Experiments show that the use of PD refreshes state-of-the-art SR performance and speeds up the convergence of training up to 2~10 times.