论文标题

伸展的 - 弹性过渡的批判性行为,用于拉动自我避免的步行

Critical behaviour of the extended-ballistic transition for pulled self-avoiding walks

论文作者

Bradly, C. J., Owczarek, A. L.

论文摘要

为了研究长链聚合物,许多晶格模型可容纳施加到链条特定部分的拉力,通常是自由端点。这是对诸如晶格聚合物和表面之间的能量相互作用等良好的特征的补充。但是,仅研究拉力的临界行为的研究较少,例如表征相变的性质,尤其是相关指数的值。我们研究了一个受强迫延伸的晶格聚合物的简单模型,即在正方形和简单的立方晶格上的自我避免行走(锯),其中一个端点附着在不可渗透的表面上,并施加到另一个端点垂直于表面上的力。在热力学限制中,由于力变化,系统会经历向弹道相的过渡,并且众所周知,每当力的大小为正时,即$ f> f_ \ text {c} = 0 $时,这种过渡就会发生。使用良好的规模参数,我们表明,有限尺寸模型的交叉指数$ ϕ $与众所周知的指数$ν_d$相同,该指数控制了$ d $ dimensions中聚合物大小的缩放。通过大量的蒙特卡洛模拟,我们测试了这个猜想,并表明$ ϕ $的值确实与已知的$ν_2= 3/4 $和$ν_3= 0.587 597(7)$一致。反过来,扩展论点意味着特定的热量指数$α$在二维中为$ 2/3 $,在三个维度上$ 0.29815(2)$。

In order to study long chain polymers many lattice models accommodate a pulling force applied to a particular part of the chain, often a free endpoint. This is in addition to well-studied features such as energetic interaction between the lattice polymer and a surface. However, the critical behaviour of the pulling force alone is less well studied, such as characterizing the nature of the phase transition and particularly the values of the associated exponents. We investigate a simple model of lattice polymers subject to forced extension, namely self-avoiding walks (SAWs) on the square and simple cubic lattices with one endpoint attached to an impermeable surface and a force applied to the other endpoint acting perpendicular to the surface. In the thermodynamic limit the system undergoes a transition to a ballistic phase as the force is varied and it is known that this transition occurs whenever the magnitude of the force is positive, i.e. $f>f_\text{c}=0$. Using well established scaling arguments we show that the crossover exponent $ϕ$ for the finite-size model is identical to the well-known exponent $ν_d$, which controls the scaling of the size of the polymer in $d$-dimensions. With extensive Monte Carlo simulations we test this conjecture and show that the value of $ϕ$ is indeed consistent with the known values of $ν_2 = 3/4$ and $ν_3 = 0.587 597(7)$. Scaling arguments, in turn, imply the specific heat exponent $α$ is $2/3$ in two dimensions and $0.29815(2)$ in three dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源