论文标题

材料的对比度学习

Graph Contrastive Learning for Materials

论文作者

Koker, Teddy, Quigley, Keegan, Spaeth, Will, Frey, Nathan C., Li, Lin

论文摘要

最近的工作表明了图神经网络有效预测材料特性的潜力,从而实现了材料的高通量筛选。但是,培训这些模型通常需要大量的标记数据,这些数据通过昂贵的方法(例如从头算计算或实验评估)获得。通过利用一系列特定于材料的转换,我们引入了CrystalClr,这是一种用晶体图神经网络来限制表示形式的框架。随着新颖的损失功能的增加,我们的框架能够学习具有工程指纹方法竞争的表示。我们还证明,通过模型登录,对比度预处理可以改善图形神经网络的性能,以预测材料特性,并显着胜过使用工程指纹的传统ML模型。最后,我们观察到CrystalClr会产生材料表示,这些表示形成簇按复合类形成簇。

Recent work has shown the potential of graph neural networks to efficiently predict material properties, enabling high-throughput screening of materials. Training these models, however, often requires large quantities of labelled data, obtained via costly methods such as ab initio calculations or experimental evaluation. By leveraging a series of material-specific transformations, we introduce CrystalCLR, a framework for constrastive learning of representations with crystal graph neural networks. With the addition of a novel loss function, our framework is able to learn representations competitive with engineered fingerprinting methods. We also demonstrate that via model finetuning, contrastive pretraining can improve the performance of graph neural networks for prediction of material properties and significantly outperform traditional ML models that use engineered fingerprints. Lastly, we observe that CrystalCLR produces material representations that form clusters by compound class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源