论文标题
量子熵的强大亚加性的新操作员扩展
A new operator extension of strong subadditivity of quantum entropy
论文作者
论文摘要
令$ s(ρ)$是密度矩阵$ρ$的von Neumann熵。虚弱的单调性断言,对于任何三型三级密度矩阵$ρ_{abc} $,$ s(ρ_{ab}) - s(ρ_a) + s(ρ_A) + s(ρ_A) + s(ρ_C)\ geq 0 $,这一事实与强尺相当的份量相等。我们证明了操作员的不平等,在对状态$ρ_{abc} $方面的期望值后,它减少了弱单调性不平等。还提出了这种不平等的概括性,即还介绍了两个独立密度矩阵及其rényi一般性矩阵的概括。
Let $S(ρ)$ be the von Neumann entropy of a density matrix $ρ$. Weak monotonicity asserts that $S(ρ_{AB}) - S(ρ_A) + S(ρ_{BC}) - S(ρ_C)\geq 0$ for any tripartite density matrix $ρ_{ABC}$, a fact that is equivalent to the strong subadditivity of entropy. We prove an operator inequality, which, upon taking an expectation value with respect to the state $ρ_{ABC}$, reduces to the weak monotonicity inequality. Generalizations of this inequality to the one involving two independent density matrices, as well as their Rényi-generalizations, are also presented.