论文标题
一个基于开放案例的推理框架,用于在风险场景中个性化的车载驾驶帮助
An Open Case-based Reasoning Framework for Personalized On-board Driving Assistance in Risk Scenarios
论文作者
论文摘要
在风险情况下,驾驶员反应至关重要。驾驶员可以在适当的缓冲时间进行正确的逃避操作,以避免潜在的交通崩溃,但是此反应过程具有很高的经验依赖性,并且需要各种水平的驾驶技能。为了提高驾驶安全性并避免交通事故,有必要为所有道路驾驶员提供车载驾驶帮助。这项研究探讨了基于案例推理(CBR)的合理性,这是通过利用稳定的流量案例中的富裕驾驶经验来选择个性化崩溃的回避操作和缓冲时间的推论,这些范例很少在先前的研究中探索过。为此,在本文中,我们提出了一个开放式不断发展的框架,以生成个性化的车载驾驶帮助。特别是,我们以高性能为FFMTE模型介绍了对流量事件进行建模并构建案例数据库的模型;然后提出一种量身定制的基于CBR的方法来检索,重复使用和修改现有案例以产生帮助。我们以100辆自然主义驾驶研究数据集为例,以建立和测试我们的框架;该实验显示出合理的结果,为驾驶员提供了有价值的回避信息,以避免在不同情况下的潜在崩溃。
Driver reaction is of vital importance in risk scenarios. Drivers can take correct evasive maneuver at proper cushion time to avoid the potential traffic crashes, but this reaction process is highly experience-dependent and requires various levels of driving skills. To improve driving safety and avoid the traffic accidents, it is necessary to provide all road drivers with on-board driving assistance. This study explores the plausibility of case-based reasoning (CBR) as the inference paradigm underlying the choice of personalized crash evasive maneuvers and the cushion time, by leveraging the wealthy of human driving experience from the steady stream of traffic cases, which have been rarely explored in previous studies. To this end, in this paper, we propose an open evolving framework for generating personalized on-board driving assistance. In particular, we present the FFMTE model with high performance to model the traffic events and build the case database; A tailored CBR-based method is then proposed to retrieve, reuse and revise the existing cases to generate the assistance. We take the 100-Car Naturalistic Driving Study dataset as an example to build and test our framework; the experiments show reasonable results, providing the drivers with valuable evasive information to avoid the potential crashes in different scenarios.