论文标题
使用条件变异自动编码器从大气Cherenkov望远镜生成图像
Using conditional variational autoencoders to generate images from atmospheric Cherenkov telescopes
论文作者
论文摘要
高能颗粒击中地球上层大气层会产生广泛的空气淋浴,可以使用成像大气Cherenkov望远镜从地面检测到。可以分析Cherenkov望远镜记录的图像,以将伽马射线事件与背景强子事件分开。许多分析方法都需要通过蒙特卡洛方法模拟大量事件和相应的图像。但是,蒙特卡洛模拟在计算上很昂贵。可以通过使用更快的机器学习方法(例如生成对抗网络或条件变异自动编码器)生成的图像来增强Monte Carlo方法模拟的数据。我们使用条件变分自动编码器从Taiga实验的Cherenkov望远镜中生成伽马事件的图像。在一组具有图像大小的蒙特卡洛事件或像素振幅的总和(用作条件参数)上训练了变异自动编码器。我们使用训练有素的变分自动编码器来生成与条件参数相同分布的新图像,与伽马事件的蒙特卡洛模拟图像的尺寸分布相同。生成的图像类似于蒙特卡洛图像:在伽马和质子事件上训练的分类器神经网络分配了平均伽马评分为0.984,不到3%的事件分配了伽马得分低于0.999。同时,生成的图像的尺寸与其生成中使用的条件参数不匹配,平均误差为0.33。
High-energy particles hitting the upper atmosphere of the Earth produce extensive air showers that can be detected from the ground level using imaging atmospheric Cherenkov telescopes. The images recorded by Cherenkov telescopes can be analyzed to separate gamma-ray events from the background hadron events. Many of the methods of analysis require simulation of massive amounts of events and the corresponding images by the Monte Carlo method. However, Monte Carlo simulation is computationally expensive. The data simulated by the Monte Carlo method can be augmented by images generated using faster machine learning methods such as generative adversarial networks or conditional variational autoencoders. We use a conditional variational autoencoder to generate images of gamma events from a Cherenkov telescope of the TAIGA experiment. The variational autoencoder is trained on a set of Monte Carlo events with the image size, or the sum of the amplitudes of the pixels, used as the conditional parameter. We used the trained variational autoencoder to generate new images with the same distribution of the conditional parameter as the size distribution of the Monte Carlo-simulated images of gamma events. The generated images are similar to the Monte Carlo images: a classifier neural network trained on gamma and proton events assigns them the average gamma score 0.984, with less than 3% of the events being assigned the gamma score below 0.999. At the same time, the sizes of the generated images do not match the conditional parameter used in their generation, with the average error 0.33.