论文标题

优化变异量子算法的深度是QCMA-HARD的近似值

Optimizing the depth of variational quantum algorithms is strongly QCMA-hard to approximate

论文作者

Bittel, Lennart, Gharibian, Sevag, Kliesch, Martin

论文摘要

[Farhi,Goldstone,Gutmann,2014]的量子量子算法(VQA)(例如,量子近似优化算法(QAOA))已经看到了对量子硬件的近期应用。 VQAS的关键参数是使用``Ansatz''所使用的\ emph {depth} - 深度越小,ANSATZ越适合近期量子硬件,因为它使电路在系统脱位之前可以完全执行电路。在这项工作中,我们表明,给定VQA Ansatz的最佳深度近似是棘手的。正式地,我们表明,对于任何常数$ε> 0 $,QCMA-HARD近似于在乘法因子$ n^{1-ε} $中近似vqa ansatz的最佳深度,对于$ n $表示VQA实例的编码大小。 (在这里,量子经典的Merlin-Arthur(QCMA)是NP的量子概括。)然后,我们证明这种硬度持续存在于偶数''simple''QAOA型设置中。据我们所知,这产生了第一个天然的QCMA- hard-hard-to-Approximate问题。

Variational Quantum Algorithms (VQAs), such as the Quantum Approximate Optimization Algorithm (QAOA) of [Farhi, Goldstone, Gutmann, 2014], have seen intense study towards near-term applications on quantum hardware. A crucial parameter for VQAs is the \emph{depth} of the variational ``ansatz'' used -- the smaller the depth, the more amenable the ansatz is to near-term quantum hardware in that it gives the circuit a chance to be fully executed before the system decoheres. In this work, we show that approximating the optimal depth for a given VQA ansatz is intractable. Formally, we show that for any constant $ε>0$, it is QCMA-hard to approximate the optimal depth of a VQA ansatz within multiplicative factor $N^{1-ε}$, for $N$ denoting the encoding size of the VQA instance. (Here, Quantum Classical Merlin-Arthur (QCMA) is a quantum generalization of NP.) We then show that this hardness persists in the even ``simpler'' QAOA-type settings. To our knowledge, this yields the first natural QCMA-hard-to-approximate problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源