论文标题
高Q蹦床谐振器,来自紧张的结晶摄入量,用于集成的自由空间光学机械
High-Q trampoline resonators from strained crystalline InGaP for integrated free-space optomechanics
论文作者
论文摘要
应对拉伸的材料已用于在KHz至MHz频率范围内用超低机械耗散制造纳米和微机械谐振器。这些机械谐振器对于在室温下的力传感应用和量子光学力学特别感兴趣。与异质结构的外延生长兼容的拉伸晶体材料将允许实现单片自由空间的光学机械设备,从而受益于稳定性,超小型模式体积和可伸缩性。在我们的工作中,我们演示了由拉伸构成的ingap制成的弦和蹦床谐振器,这是一种结晶材料,可以在藻类异质结构上外司长生长。当在(Al,Ga)上生长时,通过其GA含量定义了ingap层的应变。在我们的情况下,我们沿着$ [1 \,1 \,0] $ crystrediond的设备意识到压力高达470 \,MPA的设备。我们表征了悬浮ingap设备的机械性能,例如各向异性应力,屈服强度和内在质量因子。我们发现后者随着时间的流逝而降低。我们达到机械质量因素,在室温下,$ Q \ cdot f $ - 产品高达$ 10^7 $,高达$ 7 \ cdot10^{11} \,$ hz,$ hz,带有蹦床形的微电机电谐振器,该谐振器可利用劳动菌株工程来稀释机械耗散。悬浮的蹦床谐振器的大面积使我们能够对光子晶体进行图案,以设计其在电信带中的平面反射率,这是需要有效地将机械运动向光的有效信号转导的。通过层次夹紧或基于机器学习的优化方法稳定了内在质量因子,并进一步降低机械耗散的方法,为在室温下在结晶材料平台上在室温下集成自由空间量子光学机制铺平了道路。
Tensile-strained materials have been used to fabricate nano- and micromechanical resonators with ultra-low mechanical dissipation in the kHz to MHz frequency range. These mechanical resonators are of particular interest for force sensing applications and quantum optomechanics at room temperature. Tensile-strained crystalline materials that are compatible with epitaxial growth of heterostructures would thereby allow realizing monolithic free-space optomechanical devices, which benefit from stability, ultra-small mode volumes, and scalability. In our work, we demonstrate string- and trampoline resonators made from tensile-strained InGaP, which is a crystalline material that can be epitaxially grown on an AlGaAs heterostructure. The strain of the InGaP layer is defined via its Ga content when grown on (Al,Ga)As. In our case, we realize devices with a stress of up to 470\,MPa along the $[1\,1\,0]$ crystal direction. We characterize the mechanical properties of the suspended InGaP devices, such as anisotropic stress, yield strength, and intrinsic quality factor. We find that the latter degrades over time. We reach mechanical quality factors surpassing $10^7$ at room temperature with a $Q\cdot f$-product as high as $7\cdot10^{11}\,$Hz with trampoline-shaped micromechanical resonators, which exploit strain engineering to dilute mechanical dissipation. The large area of the suspended trampoline resonator allows us to pattern a photonic crystal to engineer its out-of-plane reflectivity in the telecom band, which is desired for efficient signal transduction of mechanical motion to light. Stabilization of the intrinsic quality factor together with a further reduction of mechanical dissipation through hierarchical clamping or machine learning-based optimization methods paves the way for integrated free-space quantum optomechanics at room temperature in a crystalline material platform.