论文标题

神经依赖性来自学习大规模类别

Neural Dependencies Emerging from Learning Massive Categories

论文作者

Feng, Ruili, Zheng, Kecheng, Zhu, Kai, Shen, Yujun, Zhao, Jian, Huang, Yukun, Zhao, Deli, Zhou, Jingren, Jordan, Michael, Zha, Zheng-Jun

论文摘要

这项工作介绍了有关用于大规模图像分类的神经网络上的两个令人惊讶的发现。 1)给定训练良好的模型,可以通过线性结合其他一些类别的预测来直接获得某些类别预测的逻辑,我们称之为\ textbf {neural依赖关系}。 2)神经依赖性不仅存在于单个模型中,而且即使在两个独立学到的模型之间,无论其体系结构如何。在对这种现象的理论分析中,我们证明了识别神经依赖性等同于解决本文提出的协方差拉索(Covlasso)回归问题。通过研究问题解决方案的特性,我们确认神经依赖性是由冗余的logit协方差矩阵保证的,在给定大量类别的情况下,很容易满足这种情况,并且神经依赖性高度稀疏,这意味着一种类别仅与其他几个其他类别相关。我们从经验上进一步展示了神经依赖性在理解内部数据相关性,将模型推广到看不见类别的潜力,并使用依赖性衍生的正常使用器改善模型鲁棒性。这项工作的代码将公开可用。

This work presents two astonishing findings on neural networks learned for large-scale image classification. 1) Given a well-trained model, the logits predicted for some category can be directly obtained by linearly combining the predictions of a few other categories, which we call \textbf{neural dependency}. 2) Neural dependencies exist not only within a single model, but even between two independently learned models, regardless of their architectures. Towards a theoretical analysis of such phenomena, we demonstrate that identifying neural dependencies is equivalent to solving the Covariance Lasso (CovLasso) regression problem proposed in this paper. Through investigating the properties of the problem solution, we confirm that neural dependency is guaranteed by a redundant logit covariance matrix, which condition is easily met given massive categories, and that neural dependency is highly sparse, implying that one category correlates to only a few others. We further empirically show the potential of neural dependencies in understanding internal data correlations, generalizing models to unseen categories, and improving model robustness with a dependency-derived regularizer. Code for this work will be made publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源