论文标题

关于公制与公制的重力的评论

A comment on Metric vs Metric-Affine Gravity

论文作者

Lindström, Ulf, Sarıoğlu, Özgür

论文摘要

我们考虑Einstein-Hilbert Action和Pontryagin密度(PD)的总和,甚至是任意尺寸$ D $。所有曲率仅是独立仿射(无扭转)连接的函数。在任意维度中,不仅在$ d = 4n $中,这些一阶PD项被证明是“ Chern-Simons”电流的协方差差异。连接的场方程导致其是Levi-civita,并且指标和仿射场方程等同于二阶度量理论。该结果是与定理的反例,表明纯度公制和公制模型仅适用于lovelock理论。

We consider the sum of the Einstein-Hilbert action and a Pontryagin density (PD) in arbitrary even dimension $D$. All curvatures are functions of independent affine (torsionless) connections only. In arbitrary dimension, not only in $D=4n$, these first order PD terms are shown to be covariant divergences of "Chern-Simons" currents. The field equation for the connection leads to it being Levi-Civita, and to the metric and affine field equations being equivalent to the second order metric theory. This result is a counterexample to the theorem stating that purely metric and metric-affine models can only be equivalent for Lovelock theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源