论文标题
超图和海洛塔方程的枚举,用于扩展的合理约束KP
Enumeration of hypermaps and Hirota equations for extended rationally constrained KP
论文作者
论文摘要
我们考虑了赫维兹·杜布罗温(Hurwitz Dubrovin) - 弗罗贝尼乌斯(Frobenius)的歧管歧管结构,在riemann sphere上具有正好的两个极点,一个简单和一个任意顺序之一。我们证明,与此dubrovin-frobenius歧管相关的所有属分区函数(也称为总后代电位)是kadomtsev-petviashvili层次结构合理降低的tau函数。这一说法是由刘,张和周的猜想。我们还为此分区函数提供了部分枚举含义,该函数将一组特定时间与列出根部超图的列举相关联。
We consider the Hurwitz Dubrovin--Frobenius manifold structure on the space of meromorphic functions on the Riemann sphere with exactly two poles, one simple and one of arbitrary order. We prove that the all genera partition function (also known as the total descendant potential) associated with this Dubrovin--Frobenius manifold is a tau function of a rational reduction of the Kadomtsev--Petviashvili hierarchy. This statement was conjectured by Liu, Zhang, and Zhou. We also provide a partial enumerative meaning for this partition function associating one particular set of times with enumeration of rooted hypermaps.