论文标题

基于变异的原因效应识别

Variation-based Cause Effect Identification

论文作者

Salem, Mohamed Amine ben, Barsim, Karim Said, Yang, Bin

论文摘要

采矿在现实世界系统中复杂数据生成过程的基础是促进数据驱动模型的解释性并因此信任的基本步骤。因此,我们提出了一个基于变异的因果效应识别(VCEI)框架,用于从单个观察环境中的双变量系统中的因果发现。我们的框架依赖于在现有的无循环因果关系的假设下的原因和机制独立性(ICM)的原则,并提供了对该原则的实际实现。主要是,我们人为地构建了两个设置,其中一个声称是原因的一个协变量的边际分布保证具有不可忽略的变化。这是通过重新加权的边际样本来实现的,因此根据某些差异度量,所得分布与该边缘的分布明显不同。在因果方向上,预期这种变化对效应产生机制没有影响。因此,量化这些变化对条件的影响揭示了真正的因果方向。此外,我们在基于内核的最大平均差异中制定了方法,从而取消了对因果协变量的数据类型的所有限制,并使这种人工干预措施成为凸优化问题。我们提供了一系列有关实际和合成数据的实验,表明VCEI原则上是与其他原因效应识别框架竞争的。

Mining genuine mechanisms underlying the complex data generation process in real-world systems is a fundamental step in promoting interpretability of, and thus trust in, data-driven models. Therefore, we propose a variation-based cause effect identification (VCEI) framework for causal discovery in bivariate systems from a single observational setting. Our framework relies on the principle of independence of cause and mechanism (ICM) under the assumption of an existing acyclic causal link, and offers a practical realization of this principle. Principally, we artificially construct two settings in which the marginal distributions of one covariate, claimed to be the cause, are guaranteed to have non-negligible variations. This is achieved by re-weighting samples of the marginal so that the resultant distribution is notably distinct from this marginal according to some discrepancy measure. In the causal direction, such variations are expected to have no impact on the effect generation mechanism. Therefore, quantifying the impact of these variations on the conditionals reveals the genuine causal direction. Moreover, we formulate our approach in the kernel-based maximum mean discrepancy, lifting all constraints on the data types of cause-and-effect covariates, and rendering such artificial interventions a convex optimization problem. We provide a series of experiments on real and synthetic data showing that VCEI is, in principle, competitive to other cause effect identification frameworks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源