论文标题
无监督的分类揭示了新的进化途径
Unsupervised classification reveals new evolutionary pathways
论文作者
论文摘要
尽管我们似乎已经有了不同类型星系的演变的一般情况,但对导致各种当今星系类型形成的过程的完整而令人满意的理解仍然超出了我们的影响力。为了解决这个问题,我们需要大型数据集达到高红移和新型方法来处理它们。 Vipers的调查统计功率在$ z> 0.5 $上观察到$ \ sim90,000 $的星系,并且应用无监督的聚类算法使我们能够区分12个星系类。对其环境依赖性的研究表明,这种分类实际上可能反映了不同的星系进化路径。例如,一类最被动的红色星系收集星系$ \ sim20 \%$比其他类似恒星质量的红色星系小,揭示了中间红移的第一个红色掘金样本。另一方面,一类蓝矮星系主要由AGN组成,挑战了常用的中红外AGN选择。
While we already seem to have a general scenario of the evolution of different types of galaxies, a complete and satisfactory understanding of the processes that led to the formation of all the variety of today's galaxy types is still beyond our reach. To solve this problem, we need both large datasets reaching high redshifts and novel methodologies for dealing with them. The VIPERS survey statistical power, which observed $\sim90,000$ galaxies at $z > 0.5$, and the application of an unsupervised clustering algorithm allowed us to distinguish 12 galaxy classes. Studies of their environmental dependence indicate that this classification may actually reflect different galaxy evolutionary paths. For instance, a class of the most passive red galaxies gathers galaxies $\sim20\%$ smaller than other red galaxies of a similar stellar mass, revealing the first sample of red nuggets at intermediate redshift. On the other end, a class of blue dwarf galaxies is composed mainly of AGN, challenging commonly used mid-infrared AGN selections.