论文标题
多分辨率内核矩阵代数
Multiresolution kernel matrix algebra
论文作者
论文摘要
我们提出了一个稀疏的代数用于采样的压缩核矩阵,以实现有效的分散数据分析。我们通过采样来显示内核矩阵的压缩,在某些S-格式中产生最佳的稀疏矩阵。它可以在成本和内存中执行,该成本和内存基本上与矩阵大小$ n $,对于有限可怜性的内核以及S-Formatted矩阵的添加和乘法。我们证明并利用了一个事实,即内核矩阵的倒数(如果存在)也可以在S-Format中压缩。选定的反转允许直接计算相应的稀疏模式中的条目。 S型矩阵操作可以对更复杂的矩阵函数(例如$ {\ bm a}^α$或$ \ exp({\ bm a})$进行有效,近似计算。矩阵代数通过伪差分计算数学合理。作为一种应用,考虑了为空间统计的有效高斯过程学习算法。提出数值结果以说明和量化我们的发现。
We propose a sparse algebra for samplet compressed kernel matrices, to enable efficient scattered data analysis. We show the compression of kernel matrices by means of samplets produces optimally sparse matrices in a certain S-format. It can be performed in cost and memory that scale essentially linearly with the matrix size $N$, for kernels of finite differentiability, along with addition and multiplication of S-formatted matrices. We prove and exploit the fact that the inverse of a kernel matrix (if it exists) is compressible in the S-format as well. Selected inversion allows to directly compute the entries in the corresponding sparsity pattern. The S-formatted matrix operations enable the efficient, approximate computation of more complicated matrix functions such as ${\bm A}^α$ or $\exp({\bm A})$. The matrix algebra is justified mathematically by pseudo differential calculus. As an application, efficient Gaussian process learning algorithms for spatial statistics is considered. Numerical results are presented to illustrate and quantify our findings.