论文标题
可审核合成数据生成的框架
A Framework for Auditable Synthetic Data Generation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Synthetic data has gained significant momentum thanks to sophisticated machine learning tools that enable the synthesis of high-dimensional datasets. However, many generation techniques do not give the data controller control over what statistical patterns are captured, leading to concerns over privacy protection. While synthetic records are not linked to a particular real-world individual, they can reveal information about users indirectly which may be unacceptable for data owners. There is thus a need to empirically verify the privacy of synthetic data -- a particularly challenging task in high-dimensional data. In this paper we present a general framework for synthetic data generation that gives data controllers full control over which statistical properties the synthetic data ought to preserve, what exact information loss is acceptable, and how to quantify it. The benefits of the approach are that (1) one can generate synthetic data that results in high utility for a given task, while (2) empirically validating that only statistics considered safe by the data curator are used to generate the data. We thus show the potential for synthetic data to be an effective means of releasing confidential data safely, while retaining useful information for analysts.