论文标题

模糊的插值变压器,用于现实世界的模糊

Blur Interpolation Transformer for Real-World Motion from Blur

论文作者

Zhong, Zhihang, Cao, Mingdeng, Ji, Xiang, Zheng, Yinqiang, Sato, Imari

论文摘要

本文研究了从Blur恢复运动的挑战性问题,该运动(也称为关节脱毛和插值或暂时超级分辨率。挑战是双重的:1)即使在合成数据集上,当前的方法仍在视觉质量方面留出很大的改进空间,而2)对现实世界数据的概括不佳。为此,我们提出了一个模糊的插值变压器(位),以有效揭示在模糊中编码的基本时间相关。基于多尺度的残留SWIN变压器块,我们介绍了双端时间监督和时间对称的结合策略,以生成有效的特征,以实现时变运动渲染。此外,我们设计了一个混合摄像头系统,以收集第一到一对模糊视频对的第一个真实数据集。实验结果表明,BIT比公共数据集AdoBE240上的最新方法具有显着增益。此外,所提出的现实世界数据集有效地有助于模型概括为真实的模糊场景。代码和数据可在https://github.com/zzh-tech/bit上找到。

This paper studies the challenging problem of recovering motion from blur, also known as joint deblurring and interpolation or blur temporal super-resolution. The challenges are twofold: 1) the current methods still leave considerable room for improvement in terms of visual quality even on the synthetic dataset, and 2) poor generalization to real-world data. To this end, we propose a blur interpolation transformer (BiT) to effectively unravel the underlying temporal correlation encoded in blur. Based on multi-scale residual Swin transformer blocks, we introduce dual-end temporal supervision and temporally symmetric ensembling strategies to generate effective features for time-varying motion rendering. In addition, we design a hybrid camera system to collect the first real-world dataset of one-to-many blur-sharp video pairs. Experimental results show that BiT has a significant gain over the state-of-the-art methods on the public dataset Adobe240. Besides, the proposed real-world dataset effectively helps the model generalize well to real blurry scenarios. Code and data are available at https://github.com/zzh-tech/BiT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源