论文标题

Treedeppth与周长

Treedepth vs circumference

论文作者

Briański, Marcin, Joret, Gwenaël, Majewski, Konrad, Micek, Piotr, Seweryn, Michał T., Sharma, Roohani

论文摘要

图$ g $的周长是$ g $中最长的周期的长度,如果$ g $没有周期,则是$+\ infty $。 Birmelé(2003)表明,图$ g $的树宽最多是其周长$ 1 $。我们以$ 2 $连接的图表来加强此结果:如果$ g $是$ 2 $连接的,则其TreeDeppth最多是其周长。由于Marshall和Wood(2015),该界限是最好的,并且可以改善较早的二次上限。

The circumference of a graph $G$ is the length of a longest cycle in $G$, or $+\infty$ if $G$ has no cycle. Birmelé (2003) showed that the treewidth of a graph $G$ is at most its circumference minus $1$. We strengthen this result for $2$-connected graphs as follows: If $G$ is $2$-connected, then its treedepth is at most its circumference. The bound is best possible and improves on an earlier quadratic upper bound due to Marshall and Wood (2015).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源