论文标题

可发现的:柔和的差异和有限的对比度学习,以揭示深层侵害

SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for Exposing Deepfakes

论文作者

Larue, Nicolas, Vu, Ngoc-Son, Struc, Vitomir, Peer, Peter, Christophides, Vassilis

论文摘要

当训练和测试图像从相同的数据收集中绘制时,现代的深泡探测器已取得了令人鼓舞的结果。但是,当这些探测器应用于使用未知的深膜产生技术产生的图像时,通常会观察到大量的性能降解。在本文中,我们提出了一种新型的深泡探测器,称为可见的检测器,将检测问题正式为(一级)分布式检测任务,并更好地概括了看不见的深击。具体而言,可看到的首先生成局部图像扰动(称为软覆盖式),然后使用基于新型的基于回归的界面对比损失将扰动的面向预定的原型推向预定义的原型。为了加强可看到的对未知深泡类型的概括性能,我们产生了丰富的软差异集并训练检测器:(i)定位,对面部的哪一部分进行了修改,以及(ii)识别改变类型。为了证明可看到的功能,我们对几个广泛使用的深层数据集进行了严格的实验,并表明我们的模型令人信服地胜过竞争的最先进的探测器,同时表现出极大的概括能力。

Modern deepfake detectors have achieved encouraging results, when training and test images are drawn from the same data collection. However, when these detectors are applied to images produced with unknown deepfake-generation techniques, considerable performance degradations are commonly observed. In this paper, we propose a novel deepfake detector, called SeeABLE, that formalizes the detection problem as a (one-class) out-of-distribution detection task and generalizes better to unseen deepfakes. Specifically, SeeABLE first generates local image perturbations (referred to as soft-discrepancies) and then pushes the perturbed faces towards predefined prototypes using a novel regression-based bounded contrastive loss. To strengthen the generalization performance of SeeABLE to unknown deepfake types, we generate a rich set of soft discrepancies and train the detector: (i) to localize, which part of the face was modified, and (ii) to identify the alteration type. To demonstrate the capabilities of SeeABLE, we perform rigorous experiments on several widely-used deepfake datasets and show that our model convincingly outperforms competing state-of-the-art detectors, while exhibiting highly encouraging generalization capabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源