论文标题

非语言面部动作单元基于自动抑郁症分类

Non-verbal Facial Action Units-based Automatic Depression Classification

论文作者

Yu, Chuang

论文摘要

抑郁症是一种常见的精神障碍,会导致人们经历情绪低落,兴趣或愉悦感,内gui或自我价值低的感觉。传统的临床抑郁诊断方法是主观且耗时的。由于抑郁症可以通过人的面部表情反映,因此我们提出了一种非语言面部行为基于面部行为的自动抑郁症分类方法。在本文中,构建了基于短期行为的抑郁症分类。基于短期行为的抑郁症检测的最终剪辑级决策是通过平均所有短期行为的预测来产生的,而我们根据两个高斯混合模型对所有帧中包含的行为进行建模。为了评估所提出的方法,我们从AVEC 2019抑郁症语料库中选择一个性别平衡子集,其中包含30名参与者。实验结果表明,我们的方法达到了75%以上的抑郁症分类精度,基于GMM的夹级抑郁症建模和基于等级的基于基于秩的短期抑郁行为模型的分类均达到了至少70%的分类精度。结果表明,我们的方法可以利用两种系统的互补信息来实现面部行为的有希望的抑郁预测。

Depression is a common mental disorder that causes people to experience depressed mood, loss of interest or pleasure, feelings of guilt or low self-worth. Traditional clinical depression diagnosis methods are subjective and time consuming. Since depression can be reflected by human facial expressions, We propose a non-verbal facial behavior-based automatic depression classification approach. In this paper, both short-term behavior-based and clip-based depression classification are constructed. The final clip-level decision of short-term behavior-based depression detection is yielded by averaging the predictions of all short-term behaviors while we modelling behaviors contained in all frames based on two Gaussian Mixture Models. To evaluate the proposed approaches, we select a gender balanced subset from AVEC 2019 depression corpus containing 30 participants. The experimental results show that our method achieved more than 75% depression classification accuracy, where both GMM-based clip-level depression modelling and rank pooling-based short-term depression behavior modelling achieved at least 70% classification accuracy. The result indicates that our approach can leverage complementary information from both systems to achieve promising depression predictions from facial behaviors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源