论文标题
多尺度数字双胞胎:开发一个快速且物理知识的替代模型,以使用不确定的气候模型
Multi-scale Digital Twin: Developing a fast and physics-informed surrogate model for groundwater contamination with uncertain climate models
论文作者
论文摘要
土壤和地下水污染是世界上数千个地点的普遍问题。受污染的地点通常需要数十年才能进行补救或监测自然衰减。气候变化加剧了长期的现场管理问题,因为降水/或降水/或蒸散状态的极端降水和/或变化可能会重新降低污染物并扩散受影响的地下水。为了快速评估在不确定气候干扰下地下水污染的时空变化,我们使用U-NET增强的机器学习替代模型开发秤。我们的U-FNO可以可靠地预测1954年至2100年地下水流量和污染物运输特性的时空变化,并具有逼真的气候投影。同时,我们开发了卷积自动编码器与在线聚类相结合,通过量化整个美国的气候区域相似性,以降低庞大的历史和预计气候数据的维度。基于ML的独特气候群体为替代建模提供气候预测,并有助于立即返回可靠的未来补给率预测,而无需查询大型气候数据集。总的来说,这种多尺度的数字双重工作可以在气候变化下推动环境补救领域。
Soil and groundwater contamination is a pervasive problem at thousands of locations across the world. Contaminated sites often require decades to remediate or to monitor natural attenuation. Climate change exacerbates the long-term site management problem because extreme precipitation and/or shifts in precipitation/evapotranspiration regimes could re-mobilize contaminants and proliferate affected groundwater. To quickly assess the spatiotemporal variations of groundwater contamination under uncertain climate disturbances, we developed a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Operator (U-FNO) to solve Partial Differential Equations (PDEs) of groundwater flow and transport simulations at the site scale.We develop a combined loss function that includes both data-driven factors and physical boundary constraints at multiple spatiotemporal scales. Our U-FNOs can reliably predict the spatiotemporal variations of groundwater flow and contaminant transport properties from 1954 to 2100 with realistic climate projections. In parallel, we develop a convolutional autoencoder combined with online clustering to reduce the dimensionality of the vast historical and projected climate data by quantifying climatic region similarities across the United States. The ML-based unique climate clusters provide climate projections for the surrogate modeling and help return reliable future recharge rate projections immediately without querying large climate datasets. In all, this Multi-scale Digital Twin work can advance the field of environmental remediation under climate change.