论文标题

多尺度数字双胞胎:开发一个快速且物理知识的替代模型,以使用不确定的气候模型

Multi-scale Digital Twin: Developing a fast and physics-informed surrogate model for groundwater contamination with uncertain climate models

论文作者

Wang, Lijing, Kurihana, Takuya, Meray, Aurelien, Mastilovic, Ilijana, Praveen, Satyarth, Xu, Zexuan, Memarzadeh, Milad, Lavin, Alexander, Wainwright, Haruko

论文摘要

土壤和地下水污染是世界上数千个地点的普遍问题。受污染的地点通常需要数十年才能进行补救或监测自然衰减。气候变化加剧了长期的现场管理问题,因为降水/或降水/或蒸散状态的极端降水和/或变化可能会重新降低污染物并扩散受影响的地下水。为了快速评估在不确定气候干扰下地下水污染的时空变化,我们使用U-NET增强的机器学习替代模型开发秤。我们的U-FNO可以可靠地预测1954年至2100年地下水流量和污染物运输特性的时空变化,并具有逼真的气候投影。同时,我们开发了卷积自动编码器与在线聚类相结合,通过量化整个美国的气候区域相似性,以降低庞大的历史和预计气候数据的维度。基于ML的独特气候群体为替代建模提供气候预测,并有助于立即返回可靠的未来补给率预测,而无需查询大型气候数据集。总的来说,这种多尺度的数字双重工作可以在气候变化下推动环境补救领域。

Soil and groundwater contamination is a pervasive problem at thousands of locations across the world. Contaminated sites often require decades to remediate or to monitor natural attenuation. Climate change exacerbates the long-term site management problem because extreme precipitation and/or shifts in precipitation/evapotranspiration regimes could re-mobilize contaminants and proliferate affected groundwater. To quickly assess the spatiotemporal variations of groundwater contamination under uncertain climate disturbances, we developed a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Operator (U-FNO) to solve Partial Differential Equations (PDEs) of groundwater flow and transport simulations at the site scale.We develop a combined loss function that includes both data-driven factors and physical boundary constraints at multiple spatiotemporal scales. Our U-FNOs can reliably predict the spatiotemporal variations of groundwater flow and contaminant transport properties from 1954 to 2100 with realistic climate projections. In parallel, we develop a convolutional autoencoder combined with online clustering to reduce the dimensionality of the vast historical and projected climate data by quantifying climatic region similarities across the United States. The ML-based unique climate clusters provide climate projections for the surrogate modeling and help return reliable future recharge rate projections immediately without querying large climate datasets. In all, this Multi-scale Digital Twin work can advance the field of environmental remediation under climate change.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源