论文标题

pidray:用于现实世界的大规模X射线基准禁止项目检测

PIDray: A Large-scale X-ray Benchmark for Real-World Prohibited Item Detection

论文作者

Zhang, Libo, Jiang, Lutao, Ji, Ruyi, Fan, Heng

论文摘要

由于许多因素,例如类内差异,阶级失衡和遮挡,依靠计算机视觉技术的自动安全检查是一项具有挑战性的任务。大多数以前的方法很少触及由于大规模数据集的稀缺而故意隐藏在凌乱的物体中的情况,从而阻碍了他们的应用。为了解决这个问题并促进相关研究,我们提出了一个名为Pidray的大规模数据集,该数据集涵盖了现实世界中的各种情况,以进行禁止项目检测,尤其是对于故意隐藏的项目。在特定的情况下,Pidray收集了124,486张X射线图像,以$ 12 $的违禁项目类别收集,并通过仔细检查手动注释每个图像,这使我们最好的知识使最大的禁止物品检测数据集迄今为止。同时,我们提出了一条一般的分界线和混合管道,以在Pidray上开发基线算法。具体而言,我们采用类似树状的结构来抑制pidray数据集中长尾问题的影响,其中第一个课程粒的节点负责二进制分类以减轻头部类别的影响,而随后的细粒节点则专用于尾巴类别的特定任务。基于这个简单而有效的方案,我们在对象检测,实例分段和多标签分类任务中提供了强大的特定任务基线,并验证对公共数据集(例如可可和Pascal VOC)的概括能力。关于Pidray的广泛实验表明,该提出的方法对当前最新方法的表现有利,尤其是对于故意隐藏的项目。我们的基准和代码将在https://github.com/lutao2021/pidray上发布。

Automatic security inspection relying on computer vision technology is a challenging task in real-world scenarios due to many factors, such as intra-class variance, class imbalance, and occlusion. Most previous methods rarely touch the cases where the prohibited items are deliberately hidden in messy objects because of the scarcity of large-scale datasets, hindering their applications. To address this issue and facilitate related research, we present a large-scale dataset, named PIDray, which covers various cases in real-world scenarios for prohibited item detection, especially for deliberately hidden items. In specific, PIDray collects 124,486 X-ray images for $12$ categories of prohibited items, and each image is manually annotated with careful inspection, which makes it, to our best knowledge, to largest prohibited items detection dataset to date. Meanwhile, we propose a general divide-and-conquer pipeline to develop baseline algorithms on PIDray. Specifically, we adopt the tree-like structure to suppress the influence of the long-tailed issue in the PIDray dataset, where the first course-grained node is tasked with the binary classification to alleviate the influence of head category, while the subsequent fine-grained node is dedicated to the specific tasks of the tail categories. Based on this simple yet effective scheme, we offer strong task-specific baselines across object detection, instance segmentation, and multi-label classification tasks and verify the generalization ability on common datasets (e.g., COCO and PASCAL VOC). Extensive experiments on PIDray demonstrate that the proposed method performs favorably against current state-of-the-art methods, especially for deliberately hidden items. Our benchmark and codes will be released at https://github.com/lutao2021/PIDray.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源