论文标题
Kobayashi度量标准和Gromov双曲线的估计有限型域
Estimates of the Kobayashi metric and Gromov hyperbolicity on convex domains of finite type
论文作者
论文摘要
在本文中,我们在有限类型的有限凸区域上对Kobayashi距离进行了局部估计,该范围与边界附近的局部假差有关。估计值是精确的,直至有限的添加期术语。我们还得出结论,配备了Kobayashi距离的域是Gromov双曲线,这给出了Zimmer结果的另一个证明。
In this paper we give an local estimate for the Kobayashi distance on a bounded convex domain of finite type, which relates to a local pseudodistance near the boundary. The estimate is precise up to a bounded additive term. Also we conclude that the domain equipped with the Kobayashi distance is Gromov hyperbolic which gives another proof of the result of Zimmer.