论文标题
特定于班级的关注(CSA)时间序列分类
Class-Specific Attention (CSA) for Time-Series Classification
论文作者
论文摘要
大多数基于神经网络的分类器使用几个隐藏层提取功能,并利用这些提取的功能在输出层进行预测。我们观察到,并非所有特征在所有类中均同样发音。我们称此类特征特定的功能。现有模型并未完全利用特定于类的功能差异,因为它们将隐藏层的所有提取特征都同样地馈送到输出层。最近的注意机制允许对不同特征的不同重点(或注意力),但是这些注意力模型本身是类不足的。在本文中,我们提出了一种新颖的类别注意力(CSA)模块,以捕获特定于类的特定特征并提高时间序列的整体分类性能。 CSA模块的设计方式使其可以在现有神经网络(NN)模型中采用以进行时间序列分类。在实验中,该模块插入了五个开始的启动神经网络模型,以进行时间序列分类,以通过使用40个不同的实际数据集来测试其有效性。广泛的实验表明,与CSA模块嵌入的NN模型在大多数情况下可以改善基本模型,并且准确性提高可能高达42%。我们的统计分析表明,嵌入CSA模块的NN模型的性能优于67%的MTS和80%的UTS测试用例的基本NN模型,并且在11%的MTS和13%的UTS测试用例上,CSA模块的性能明显更好。
Most neural network-based classifiers extract features using several hidden layers and make predictions at the output layer by utilizing these extracted features. We observe that not all features are equally pronounced in all classes; we call such features class-specific features. Existing models do not fully utilize the class-specific differences in features as they feed all extracted features from the hidden layers equally to the output layers. Recent attention mechanisms allow giving different emphasis (or attention) to different features, but these attention models are themselves class-agnostic. In this paper, we propose a novel class-specific attention (CSA) module to capture significant class-specific features and improve the overall classification performance of time series. The CSA module is designed in a way such that it can be adopted in existing neural network (NN) based models to conduct time series classification. In the experiments, this module is plugged into five start-of-the-art neural network models for time series classification to test its effectiveness by using 40 different real datasets. Extensive experiments show that an NN model embedded with the CSA module can improve the base model in most cases and the accuracy improvement can be up to 42%. Our statistical analysis show that the performance of an NN model embedding the CSA module is better than the base NN model on 67% of MTS and 80% of UTS test cases and is significantly better on 11% of MTS and 13% of UTS test cases.