论文标题
智能城市中数据融合和多任务学习的变压器框架
A Transformer Framework for Data Fusion and Multi-Task Learning in Smart Cities
论文作者
论文摘要
快速的全球城市化是一把双刃剑,预示了经济繁荣和公共卫生的承诺,同时也带来了独特的环境和人道主义挑战。通过整合人工智能(AI)和物联网(IoT),智能和连接的社区(S&CCS)将以数据为中心的解决方案应用于这些问题。智能技术的这种耦合还提出了有关异质数据融合和任务多样性的有趣系统设计挑战。鉴于它们在自然语言处理(NLP),计算机视觉,时间序列回归和多模式数据融合的各种领域的成功,因此特别感兴趣地解决这些问题。这就提出了一个问题,是否可以进一步多样化,以利用物联网数据源的融合,以在S&CC贸易空间中进行异质的多任务学习。在本文中,提出了一种基于变压器的AI系统,用于新兴的智能城市。系统使用纯编码器主链设计,并通过可互换的输入嵌入和输出任务头进一步定制,该系统几乎支持呈现S&CCS的任何输入数据和输出任务类型。通过学习多样化的任务集代表S&CC环境的各种任务集,包括多元时间序列回归,视觉植物性疾病分类以及图像时间序列融合任务,证明了这种概括性。仿真结果表明,所提出的基于变压器的系统可以通过自定义序列嵌入技术处理各种输入数据类型,并且自然适合学习各种任务。结果还表明,多任务学习者同时提高了内存和计算效率,同时保持与单任务变体和非转换基线的可比性能。
Rapid global urbanization is a double-edged sword, heralding promises of economical prosperity and public health while also posing unique environmental and humanitarian challenges. Smart and connected communities (S&CCs) apply data-centric solutions to these problems by integrating artificial intelligence (AI) and the Internet of Things (IoT). This coupling of intelligent technologies also poses interesting system design challenges regarding heterogeneous data fusion and task diversity. Transformers are of particular interest to address these problems, given their success across diverse fields of natural language processing (NLP), computer vision, time-series regression, and multi-modal data fusion. This begs the question whether Transformers can be further diversified to leverage fusions of IoT data sources for heterogeneous multi-task learning in S&CC trade spaces. In this paper, a Transformer-based AI system for emerging smart cities is proposed. Designed using a pure encoder backbone, and further customized through interchangeable input embedding and output task heads, the system supports virtually any input data and output task types present S&CCs. This generalizability is demonstrated through learning diverse task sets representative of S&CC environments, including multivariate time-series regression, visual plant disease classification, and image-time-series fusion tasks using a combination of Beijing PM2.5 and Plant Village datasets. Simulation results show that the proposed Transformer-based system can handle various input data types via custom sequence embedding techniques, and are naturally suited to learning a diverse set of tasks. The results also show that multi-task learners increase both memory and computational efficiency while maintaining comparable performance to both single-task variants, and non-Transformer baselines.